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STRUCTURAL AND FUNCTIONAL CONSIDERATIONS IN THE DESIGN OF 

COLLAGEN-BASED ELECTROSPUN SCAFFOLDS 
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Electrospinning can be used to selectively process a variety of natural and synthetic 

polymers into highly porous scaffolds composed of nano-to-micron diameter fibers. This 

process shows great potential as a gateway to the development of physiologically relevant 

tissue engineering scaffolds. In this study we examine the structural and functional 

considerations regarding electrospun scaffolds for dermal template applications using 

novel quantification techniques. In order to characterize scaffold structure, a technique 

utilizing the fast Fourier transform was developed to systematically quantify fiber 
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alignment and evaluate how different electrospinning parameters impact the structure and 

material properties of an electrospun scaffold. Gelatin was suspended at varying 

concentrations (80, 100, 130 and 150 mg/ml) and electrospun from 2,2,2 trifluoroethanol 

onto a rotating mandrel (200-7000 RPM). Scaffold anisotropy developed as a function of 

fiber diameter and mandrel speed and the induction of varying degrees of anisotropy 

imparted distinctive material properties to the electrospun scaffolds. Fiber alignment was 

the variable most closely associated with the regulation of peak stress, peak strain and 

modulus of elasticity. Next, we examined how the chemical and physical composition of 

the local microenvironment and the unmasking of possible RGD sensitive binding sites 

through collagen denaturation, independent of scaffold architecture and porosity, impacts 

cellular processes. We cultured human dermal fibroblasts on electrospun nylon coated 

with a variety of non-denatured and thermally denatured collagen-based proteins, as well 

as recovered electrospun collagen and gelatin (in an effort to examine if the 

electrospinning process degrades the collagen α chain). Differences in adhesion, 

proliferation and migration were exhibited between collagen-based proteins. Adhesion 

inhibition assays using a cyclic RGD peptide demonstrated no change in cell adhesion on 

non-denatured proteins and a significant drop in cell adhesion on thermally denatured 

proteins. Based on gel analysis and the results of our functional assays we conclude that 

collagen  chain structure is not directly altered by the electrospinning process. Overall, 

these results are critical to the understanding of how structure and architecture contribute 

to the overall properties of a scaffold, as well as how molecular variations can modulate 

scaffold functionality in a cellular environment.  

 xi
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 1 

 

 

CHAPTER 1 Wound Healing 

 
Injuries to the skin and the subsequent healing of a wound represent a complex 

process that occurs on a continuum. At one extreme of this continuum, the tissue 

undergoes regeneration and there is a complete restoration of normal structure and 

function. This positive result usually occurs in younger patients while in the adult, wound 

resolution typically occurs at the other extreme of the continuum and the dermis is 

reconstituted as scar tissue. As a non-functional analog of the dermis, scar tissue can 

subject the patient to physiological as well as psychological complications. Scar tissue is 

inelastic, painful, often disfiguring and can drastically limit joint movement. Implanting 

dermal regeneration templates (comprised of model structural and biologic properties) to 

act as a substitute for the provisional matrix may enhance the wound healing process and 

tip the scales toward scarless wound healing. 

 

STRUCTURE OF NORMAL SKIN 

 

Epidermis: Compositional and Architectural Features. Intact skin is 

structurally and functionally divided into the epidermal and dermal compartments. These 

compartments are separated by a basal lamina rich in Type IV collagen and laminin-5 [2]. 

The epidermis, or outer layer of the skin, is cellular in nature and in a state of constant 
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turnover [3]. Keratinocytes represent upwards of 90% of the total cell population and 

form a multi-layered, hydrophobic barrier that protects the underlying dermis from 

dehydration [4]. Melanocytes, Merkel cells and Langerhans cells are also present in the 

epidermis. Melanocytes produce pigments that determine skin color, Merkel cells 

mediate cutaneous innervation and Langerhans cells regulate aspects of immune 

surveillance. As a consequence of its cellular composition, injuries to this superficial 

layer of the skin (also known as partial thickness injuries) commonly result in the 

regeneration of a functional epithelium [5]. The dermo-epidermal junction is composed 

of reticulin fibers and small collagen fibrils [3]. Rete pegs, macroscopic protrusions of the 

epidermal layer, project at irregular intervals into the dermis. These structures increase 

surface area and the adhesion of the epidermis to the dermis. This junction is unique in 

each area of the body and with aging a flattening of these ridges is commonly seen [6].  

 

Dermis: Compositional and Architectural Features. The dermis, or deeper 

layer, makes up the greater part of skin and is an irregular, fibrous network of connective 

tissue embedded in an amorphous ground substance that functions to resist compression 

[3]. The dermis is sparsely populated by interstitial fibroblasts and macrophages. 

Fibroblasts produce and remodel the collagen that serves as the backbone of this tissue. 

Nutrients are supplied by the numerous small caliber blood vessels that are present. The 

many functions of the dermis include defense from mechanical injury, supplying oxygen 

and nutrients to the epidermis and allowing joint movement and stretch [6]. When both 

the epidermal and dermal layers of the skin are compromised (also known as a full 

 2
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thickness injury), wound healing is characterized by varying amounts of both 

regeneration and scarring [7][8]. 

The dermis of the skin is further subdivided into a papillary layer and reticular 

layer. These domains are continuous with one another and have no distinct borders; each 

contains specific collagen isotypes and exhibits distinctive architectural features [2][9]. 

The papillary layer, found directly beneath the epidermis, is comprised primarily of Type 

III collagen and a small quantity of Type I collagen. The fibers in this layer exhibit 

smaller cross-sectional diameters than those found in the reticular layer and are modestly 

aligned in parallel with the local lines of tension (e.g. Langers’ lines). The deeper layer, 

the reticular dermis, is composed of dense, random arrays of Type I collagen organized 

into large-scale bundles [10-12]. Type III collagen is present, but at substantially lower 

concentrations than Type I collagen. Notably, with electrospinning it is theoretically 

possible to process collagen into tissue engineering scaffolds that are composed of fibers 

that approximate the size scale and architecture observed in the native dermis [13-16]. 

 

EVENTS LEADING TO WOUND RESOLUTION 

 

Wound resolution in a full-thickness injury involves a complex, orchestrated 

series of events. The healing process is affected by various factors ranging from the 

initial severity of the injury, the age of the individual and intrinsic or extrinsic factors.  

Intrinsic factors include the health of the patient: presence or absence of disease, age, 

immune status, and nutritional state.  Extrinsic factors include complications at the injury 

 3
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site: degree of wound contamination, infection and necrosis, and presence or absence of 

medications. Keratinocytes and interstitial fibroblasts mediate the majority of the events 

that are necessary to resolve a wound. The events that take place during wound healing 

overlap in time and can be sub-divided into inflammation, tissue formation and tissue 

remodeling [1]. Perturbations that impact the natural progression of these processes 

exacerbate scar formation [18-20].  

 

Inflammation. During this phase, platelet activation and aggregation, fibrin clot 

formation and clot remodeling occur.  These primary events of the wound healing 

cascade take place over a time frame of minutes to hours. All of these actions work to 

reestablish hemostasis in the wound bed. Platelets delivered to the injury via blood 

vessels undergo activation and spread, leading to the accumulation of additional platelets 

within the developing thrombus and hemostasis. Platelets facilitate the assembly of a 

fibrin plug and release PDGF (platelet derived growth factor) to recruit macrophages and 

fibroblasts to the area [1][21]. The platelet plug and fibrin clot produced during this phase 

mark the onset of the evolution of a provisional wound matrix or “natural dermal 

template” for the subsequent stages of the healing process [1][37]. Next, monocytes 

infiltrate the wound bed from blood vessel walls, differentiate into macrophages and 

release PDGF as well as vascular endothelial growth factor (VEGF), molecules that 

instigate the formation of granulation tissue [1]. These macrophages also bind to the 

ECM and become phagocytotic, engulfing microorganisms and ECM fragments that are 

present in the wound [1]. Adherence to the ECM also causes monocytes and 

 4
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macrophages to express a variety of growth factors that are critical to the initiation and 

diffusion of tissue formation. Principal signaling molecules released by monocytes and 

macrophages include colony stimulating factor 1 (CSF-1), TNF-α (tumor necrosis factor-

α), TGF-α (transforming growth factor-α), EGF (epidermal growth factor), IL-1 

(interleukin-1), leukotrienes and notably, in the adult, TGF-β1 and TGF-β2 [1][21]. TGF-

β3 predominates in fetal tissues where the continuum of healing favors regeneration [22-

24]. Overall, the presence of monocytes and macrophages in a wound bed is essential for 

the transition between tissue inflammation and formation and sets the stage for eventual 

wound resolution [1]. 

 

Tissue Formation. Re-epithelialization begins shortly after injury and functions 

to approximate the architecture of the tissue prior to wounding and reestablish the 

basement membrane. Initially, epidermal cells undergo a phenotypic change to allow cell 

movement; these cells then release MMP-1 to degrade the ECM and begin to migrate 

inward from the periphery of the injury. One to two days after the initial injury, these 

cells begin to proliferate at an accelerated rate and express basement membrane proteins 

[1]. As re-epithelialization occurs, a new basement membrane is established from the 

margin of the wound inward [1]. The basement membrane is formed as cells migrate; 

when these cells take up residency and begin to proliferate and differentiate, an increased 

quantity of basement membrane is produced. Epidermal cells then return to their original 

phenotype and reattach themselves to the newly formed basement membrane and 

underlying dermis. 

 5
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Granulation tissue, a provisional matrix that evolves from the platelet plug and 

fibrin clot that mark inflammation, is enriched in fibrin, fibronectin, collagen and gelatin 

and is characterized by newly formed capillaries and develops approximately four days 

after injury. Fibroblasts are signaled to penetrate the provisional matrix in response to 

PDGF, as they enter the wound bed they synthesize and deposit new ECM. During this 

interval of the wound healing cascade macrophages release a steady stream of growth 

factors (namely TGF-β and PDGF) to stimulate tissue formation and angiogenesis [1]. At 

the close of the tissue formation phase the provisional matrix is composed of fibrin, 

fibronectin and hyaluronic acid, this provisional matrix will eventually be replaced by a 

collagenous matrix. After the synthesis, deposition and remodeling of the ECM, 

fibroblasts undergo apoptosis, resulting in a primarily acellular scar [1].  

 

Tissue Remodeling. During the remodeling stage the provisional matrix is 

transformed into granulation tissue, this process is marked by the differentiation of 

fibroblasts into the myofibroblast [25]. Myofibroblasts, a highly contractile phenotype, 

express α-smooth muscle actin (α-SMA) at increased rates, develop increased intrinsic 

capacity to contract and begin to apply tension across the provisional matrix/granulation 

tissue, an action that pulls the free edges of the wound inward, reducing the total surface 

area of the injury [25]. Molecular markers of the myofibroblast include an increased 

expression and accumulation of α-SMA (regarded as the most reliable myofibroblast 

marker) [26][27], increased expression of fibronectin [25][28] and αvβ5 integrin 

expression [29]. Myofibroblast contraction is stimulated by TGF-β1, TGF-β2, PDGF, 

 6
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matrix stiffness and attachment of fibroblasts to the collagen matrix through cell adhesion 

complexes [1]. Aside from the presence of α-SMA, myofibroblasts also differ from 

fibroblasts in manner in which they are linked to surrounding extracellular environment, 

this cell type expresses focal adhesions that are significantly larger than those of classical 

fibroblasts (8-30 μm compared to 2-6 μm) [34]. These focal adhesions, termed “super 

mature” focal adhesions, exhibit a precise molecular composition and contain large 

amounts of vinculin, paxillin, tensin and integrins αvβ3 and α5β1 [34]. 

Wound healing progression and the formation of dermal constituents are 

modulated by matrix metalloproteinases (MMP’s) secreted by cells. These proteases 

function in the extracellular environment and function to degrade ECM proteins, they are 

also thought to influence various cell processes such as proliferation, migration and 

differentiation [1][25]. The extent and quality of tissue remodeling during the transition 

between granulation tissue and scar formation depends highly upon the rate of collagen 

synthesis and degradation. MMP function is regulated by a complex regulatory cascade; 

these enzymes are deposited into the ECM as inactive pro-enzymes. They are stablizied 

in this state by small peptides, the tissue inhibiting matrix metalloproteinases (TIMP’s) 

[1][25].  The pro-MMP peptide is converted at the cell membrane by MT-1MMP (MMP-

14), a membrane bound protease, into an active enzyme. 

 During early remodeling, the balance of MMP and TIMP mediated regulation 

favors matrix deposition; in the later stages the balance veers towards matrix degradation 

[35]. Impaired ECM reorganization in chronic wounds may be related to decreased levels 

of MMP expression (specifically MMP-1 and MMP-2) caused by increased expression of 

 7
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TIMP’s (specifically TIMP-1 and TIMP-2) [38]. These observations correspond with 

published results from another laboratory that measured an increased MMP to TIMP ratio 

in scarless wounds [30]. MMP expression can be controlled through growth factors (such 

as PDGF and TGF-β) and integrins, cell surface receptors that allow cells to distinguish 

specific elements of the surrounding environment [31]. The ability of cells to 

environmentally discriminate underscores the vital role that dermal template composition 

may play in regulating the wound healing cascade [17].  

 

Myofibroblast Differentiation and Scar Formation. The myofibroblast 

represents a critical marker of tissue remodeling. These cells may originate from resident 

interstitial fibroblasts that populate tissues adjacent to the injury and from a circulating 

pool of CD45+ leukocytes called fibrocytes [32-34]. The relative contribution of each 

cell source to the myofibroblast population remains to be fully delineated. Fibroblasts 

initially differentiate into an intermediate cell type known as the proto-myofibroblast. 

This differentiation is caused by the composition, organization and mechanical properties 

present in the ECM surrounding the fibroblast, as well as locally released soluble signals 

known as cytokines [34]. The major function of this cell type is tissue remodeling and the 

proto-myofibroblast only applies a nominal amount of tension across the matrix. β and γ-

cytoplasmic actin stress fibers, isoforms present in non-muscle cells, are found in both 

quiescent fibroblasts and proto-myofibroblasts [34]. The actin of fibroblasts is arranged 

in a cortical network and this cell type lacks significant contractile capacity (with respect 

to the myofibroblast); the proto-myofibroblast expresses more actin and elaborate stress 
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fibers, factors that underlie the increased contractile capacity of this phenotype [35].  As a 

function of the matrix stress developed during remodeling, proto-myofibroblasts 

differentiate into myofibroblasts and express bundled α-SMA stress fibers. TGF-β1 

induces the myofibroblast differentiation program through a Smad dependent 

intracellular signal pathway [35] [39]. TGF-β1 initiates the release of CTFG (connective 

tissue growth factor) and these cytokines act in tandem to promote myofibroblast 

differentiation. Additionally, integrin αvβ5 has been implicated in myofibroblast 

differentiation [29]. However, even in the presence of high levels of TGF-β1, 

myofibroblasts will only exhibit contractile activity with a sufficiently rigid matrix [34].  

The presence of α-SMA positive stress fibers greatly enhances myofibroblast 

contractile capacity. The appearance of these fully differentiated cells marks the onset of 

the contractile phase of wound remodeling [34][35]. Myosin II stress fibers are also 

present in myofibroblasts; these fibers attach to actin fibers by the phosphorylation of 

myosin light chain kinase (MLCK) and are inactivated by the dephosphorylation of 

myosin light chain phosphatase (MLCP) [36]. Stress fiber contraction is modulated by 

MLCK in response to intracellular Ca2+ and is rapid when MLCP is activated. 

Conversely, stress fiber contraction is sustained when MLCP is inactivated by the 

Rho/ROCK (Rho-kinase) pathway [36]. Recent studies have shown that myofibroblast 

contraction is modulated by MLCP inactivation by the Rho/Rock pathway, indicating that 

this mechanism may be able to promote sustained rather than rapid wound closure [36]. 

Rho, a family of GTP-binding proteins, acts as a molecular switch to regulate various cell 

processes. More specifically, the RhoA GTP-ase has been shown to control stress fiber 
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and focal adhesion formation through the activation of ROCK and may be modulated by 

TGF-β1 [58].   

Myofibroblasts halt their wound contraction and undergo apoptosis when wound 

tissue is adequately repaired. Myofibroblast activity that does not stop when the tissue is 

sufficiently repaired leads to tissue deformation and scarring [34]. Processes that may 

develop as a function of very slow or rapid wound contraction, such as insufficient or 

excessive remodeling, may also influence the quality of wound resolution. While the 

mass suicide of myofibroblasts following wound resolution is not completely understood, 

it is believed to occur in response to a reduction in stress experienced by the cells and an 

increase in cell-cell contact [34].  

 

WOUND HEALING MODEL 

 

The major events that underscore wound healing can be loosely divided into 

inflammation, tissue formation and tissue remodeling. Wound healing can be more 

specifically differentiated by the development of the fibrin clot, provisional matrix and 

granulation tissue. The formation of these structures is crucial to the wound healing 

process; the timing and progression of these events influences eventual wound resolution 

and scar formation. A variety of devices, called dermal regeneration templates, have been 

developed in attempts to modulate the wound healing process and promote scarless (or at 

the very least, reduced scarring) wound healing.  
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Dermal regeneration template implantation focuses on the early stages of 

inflammation and the provisional matrix. Initially, the provisional matrix is 

predominantly composed of fibrin, fibronectin and hyaluronic acid; constituents that 

represent an “immature” matrix. Implanted dermal templates are usually composed of 

materials that are characteristic of a more “mature” matrix similar to the provisional 

matrix seen later in wound healing (which is composed primarily of collagen). The 

possible problem in this scenario is the placement of a “mature” matrix in an environment 

primed to respond to an “immature” matrix. The constituents and signals in the 

environment must adapt and continue the wound healing process to reflect the material in 

place. This adaptation may indicate why matrix synthesis and degradation, as well as 

differentiation, appears to occur more readily on dermal fibroblast plated gelatin scaffolds 

versus collagen scaffolds [17]; the presence of collagen may indicate an already 

remodeled wound matrix. However, experiments conducted in our laboratory indicate 

that implanted gelatin scaffolds appear to induce significant inflammation, retard cell 

penetration and increase scar formation. Conversely, implanted collagen scaffolds appear 

to cause minimal inflammation, promote cell penetration and induce less scarring than 

implanted gelatin scaffolds. A dermal template composed of a combination of these two 

materials may stimulate the various poor wound remodeling processes seen on collagen 

scaffolds while reducing the considerable inflammation induced by gelatin scaffolds. 
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TISSUE ENGINEERING: LIMITATIONS 

 

The ability to fabricate tissues in vitro for use in reconstructive therapy in vivo 

has encountered both biological and technical limitations.  In vivo, normal developmental 

processes take place over an extended period of time.  During embryonic development 

the mass and density of tissues increases in parallel with the volume of capillaries present 

and the capacity of the cardiovascular system to deliver oxygen and provide nutrient 

exchange.  In these embryonic tissues, “timing” is perfect with regards to oxygen need 

and delivery; in areas of high oxygen demand, there is high capillary growth.  In the 

bioengineering paradigm, the degree of development and, eventually, the fate of the 

tissue (i.e. survival), is dependent upon capillary in-growth and oxygen delivery/nutrient 

exchange.  Bioengineered tissue fabricated in vitro lacks cardiovascular support and must 

be sustained by passive diffusion when it is implanted in vivo.  If passive diffusion does 

not deliver adequate oxygen and nutrients, tissue death occurs.  This consideration greatly 

limits the mass and density of tissue that can be fabricated and supported in vitro 

Limiting the mass of an implant has consequences on implant performance.  For 

example, while it is possible to fabricate small pieces of cardiac-like tissue, it is unclear if 

this type of tissue could provide a meaningful benefit to a recipient patient.  Increasing 

the mass of this type of implant would clearly increase its overall performance profile and 

enhance its ability to truly augment cardiac performance. However, as the mass and 

cellular density of this type of tissue is increased, the diffusion barriers that must be 

circumvented to support the tissue become increasingly more difficult to overcome.  
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Preparing bioengineered tissue in a bioreactor (a generic designation for a device 

designed to increase nutrient exchange) can, to some extent, increase the mass of tissue 

that can be supported in vitro.  However, when first implanted, any tissue fabricated in 

vitro must still be supported by the passive diffusion of nutrients from the surrounding 

interstitium until a functional capillary network and nascent interconnections with the 

cardiovascular system of the host develop.  

These observations underscore the essential role that tissue engineering scaffolds 

play in the bioengineering paradigm. These scaffolds must have sufficient mechanical 

integrity to support an implant, yet support rapid capillary formation. Additionally, 

scaffolds must readily support cell infiltration and allow for scaffold penetration in three-

dimensional space. Scaffolds must have a high degree of biocompatibility, otherwise any 

immune reaction will have to be managed, adding additional burdens to patient recovery 

for any procedure in which engineered tissues are used to reconstruct damaged or missing 

organs.  

Identifying suitable materials to be used in the fabrication of tissue engineering 

scaffolds remains critical to advancing this field of medicine. While several candidates 

have been identified it remains unclear which material will undergo more complete 

development. In summary, for many applications, an ideal material is one that exhibits 

excellent biocompatibility (low inflammatory potential) and supports rapid and extensive 

capillary growth.     
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OVERVIEW 

 

 This study examines the structural and functional considerations regarding 

electrospun scaffolds for tissue-engineering applications. While this work focuses on the 

use of electrospun scaffolds as dermal templates for improving wound resolution, the 

techniques and assays developed to examine the structural and functional aspects of these 

materials are applicable for use in a variety of arenas and scaffold production methods. 

The major idea here is that material identity and initial fabrication parameters (factors 

that control material and molecular properties, as well as signaling cues for cells) have a 

profound impact on the overall functionality of a scaffold. Recent research in tissue 

engineering has focused on mimicking the complex and multifunctional nature of the 

native ECM (a scaffold whose composition and architecture has a profound impact on the 

phenotypic and functional properties of a cellular compartment); this task is entirely 

unfeasible unless there is an understanding regarding how scaffold structure develops and 

how the functionality of a scaffold can be modulated by initial considerations (i.e. 

material identity, fiber alignment, pore size, fiber size, etc.). The remainder of this 

document is organized into chapters in the following order:  

 

 Nanotechnology in the design of scaffolds: innovations in structure and 

function (currently under review for publication in Wiley Interdisciplinary 

Reviews: Nanomedicine, 2009) 
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 Measuring fiber alignment in electrospun scaffolds: a user’s guide to the 

2D fast Fourier transform approach (published in the Journal of 

Biomaterials Science, Polymer Edition, 2007, volume 19, pages 603-621) 

 Modulation of anisotropy in electrospun tissue-engineering scaffolds: 

analysis of fiber alignment by the fast Fourier transform (published in 

Biomaterials, 2006, volume 27, pages 5524-5534) 

 Incremental changes in anisotropy induce incremental changes in the 

material properties of electrospun scaffolds (published in Acta 

Biomaterialia, 2007, volume 3, pages 651-661) 

 Investigation of Dermal Fibroblast Adhesion on Denatured Electrospun 

Materials (in the process of being submitted for review in Biomaterials at 

the time this document was prepared) 

 

This document begins with a review covering the current scaffold production 

methods and recent advancements with regards to the overall structure and function of a 

scaffold, specifically examining recent innovations in scaffold composition, architecture 

and the use of bio-techniques during scaffold fabrication. Next, a review detailing the use 

of the fast Fourier transform (FFT) for measuring fiber alignment in a scaffold is given. 

This powerful characterization tool can be used to assign a numerical value to fiber 

alignment, a scaffold feature that plays a central role in determining the material 

properties of a scaffold, as well as acting as a source of guidance cues for cells.  The 

detail in which the FFT technique is discussed in this section will enable readers to better 
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understand the use of the FFT method to investigate scaffold structure. The next chapter 

demonstrates the effect of fiber diameter and mandrel speed on the induction of 

anisotropy in an electrospun scaffold (as measured by the FFT technique).  Additionally, 

the effect of electrospinning voltage and air gap distance on fiber alignment was 

examined during this study but was not included in the final paper (the work regarding 

these details can be found in Appendix A). The subsequent chapter examines how 

changes in fiber diameter, fiber alignment (as quantified by the FFT technique) and angle 

of testing modulate the material properties of an electrospun scaffold. The final chapter in 

this document examines the development and use of a series of novel assays for the 

systematic evaluation of protein structure. These investigations were conducted in an 

effort to examine how the chemical and physical composition of the local 

microenvironment and the unmasking of possible RGD sensitive binding sites through 

collagen denaturation, independent of scaffold architecture and porosity, impacts cellular 

processes. The divulgence of binding sites following tissue injury may act as a signaling 

cue for cells and the presence of degraded proteins in a tissue-engineering scaffold may 

be advantageous. In addition, the results of these assays were used as a barometer to 

investigate if the electrospinning process alters collagen function. Overall, the results 

discussed throughout this document are critical to the understanding of how structure and 

architecture contribute to the overall properties of a scaffold, as well as how molecular 

variations can modulate scaffold functionality in a cellular environment. Understanding 

and characterizing these elements is crucial for the facilitation of a meaningful and 

clinically-relevant dermal template. 
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CHAPTER 2 Advancements in Scaffold Design 
 

Preface: The following manuscript is currently under review for publication in Wiley 

Interdisciplinary Reviews: Nanomedicine, 2009 [16]. The work included explores the 

current tissue-engineering scaffold production methods as well as scaffold advancements 

with regard to composition, architecture and bio-techniques. 
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ABSTRACT 

 

Engineered scaffolds function to supplement or replace injured, missing or compromised 

tissue or organs. The current direction in this research area is to create scaffolds that 

mimic the structure and function of the native extracellular matrix (ECM). It is believed 

that the fabrication of a scaffold that has both structural integrity and allows for normal 

cellular function and interaction will bring scaffolds closer to clinical relevance. 

Nanotechnology innovations have aided in the development of techniques for the 

production of nanofiber scaffolds. The three major processing techniques, self-assembly, 

phase separation and electrospinning, produce fibers that rival the size of those found in 

the native ECM. However, the simplicity, versatility and scalability of electrospinning 

make it an attractive processing method that can be used to reproduce aspects of the 

complexity that characterizes the native ECM. Novel electrospinning strategies include 

alterations of scaffold composition and architecture, along with the addition and 

encapsulation of cells, pharmaceuticals and growth factors within the scaffold. This paper 

will review the major nanofiber fabrication technologies as well as delve into recent 

significant contributions to the conception of a meaningful and practical electrospun 

scaffold. 
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INTRODUCTION 

 

Engineered scaffolds are designed to augment or completely replace damaged, 

missing or otherwise compromised tissue or organs. These scaffolds may be permanently 

integrated into or bioresorbed by the body and must be capable of mimicking the 

conditions and characteristics present in local microenvironments throughout the 

mammalian organ system. The extracellular matrix (ECM) not only defines the three-

dimensional architecture of an organ but is also engaged in a complicated relationship 

with the cellular elements that populate the surrounding environment. Biochemical and 

mechanical events can induce changes in the local microenvironment that modulate the 

composition and architecture of the ECM. In turn, these changes in the ECM can regulate 

the phenotype and functional properties of the cellular compartment. Communication 

between the cell and ECM molecules influences various cellular processes, such as 

adhesion, proliferation, differentiation, migration and apoptosis, as well as growth factor 

and cytokine modulation. The timing of these events critically affects tissue formation 

and remodeling, processes that are crucial for the integration of a scaffold into the 

surrounding environment. The fibers that make-up the backbone of the elaborate ECM 

network exhibit distinctive, and often times, regional variations in identity, cross-

sectional diameter and polarity. For example, the ECM of the dermis can be subdivided 

into two discrete sub-compartments, a deep reticular layer and a superficial papillary 

layer. The reticular compartment is occupied by large diameter fibers of Type I collagen 

and elastin that are distributed into large-scale random bundles. Conversely, the 
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superficial papillary layer of the skin contains small diameter fibers of Type III collagen 

and elastin that exhibit a modest degree of anisotropy. In order to produce a functional 

scaffold and improve over previous generations of scaffolds, the complex and 

multifunctional nature of the ECM must be characterized and replicated.  

 Advancements in nanotechnology, specifically in the field of nanofiber 

fabrication, have shown great promise with respect to developing clinically relevant 

scaffolds. Research in this arena focuses largely on the design and fabrication of 

nanofibers composed of natural and/or synthetic materials. Self-assembly, phase 

separation and electrospinning can all be used to successfully generate nanofibers well 

within the range of fibers present in the native ECM (50 to 500 nm) [41]. This review 

will focus on the method of electrospinning for the production of soft tissue scaffold 

implants; the electrospinning process is simple, rapid and allows for the production of 

scaffolds of various shapes, sizes and materials (both natural and synthetic) [13][42][43]. 

The latest innovations in electrospun scaffolds cover a broad range of exploration from 

using novel materials alone or in concert with other materials, to achieving a high level of 

control over scaffold architecture, to electrospinning polymer solutions with cells, 

antibiotics and growth factors. This paper will provide a review of existing nanofiber 

fabrication techniques as well as focus on present research developments involving 

electrospun scaffolds. 
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SCAFFOLD PRODUCTION METHODS 

 

The native ECM is an elaborate network whose composition and structure can 

modulate the phenotype of the resident cells within a tissue or organ [44][45]. Scaffolds 

that can mimic the composition, structure and function of the native ECM represent a 

potential gateway to the production of clinically relevant scaffolds. Presently, the major 

techniques for the fabrication of nanofiber scaffolds are self-assembly, phase-separation 

and electrospinning.  

 

Self Assembly. Self-assembly is the organization of disordered molecules into 

structures or patterns without external intervention. The most commonly researched self-

assembled nanofibers, peptide amphiphiles (PAs), were initially developed by Berndt et 

al. for use in investigating the interaction between peptide structures and ligands [59]. PA 

systems are ligand-receptor pairs that are integrated into separate lipid molecules and 

fixed by means of self-assembly onto a surface [59]. PAs are composed of a hydrophilic 

peptide head group (a N-alpha amino group) attached to a hydrophobic tail group (a 

dialkyl chain moiety) and were originally developed using peptide sequences from 

collagen fragments [46][47]. Both dialkyl and monoalkyl PAs self-assemble and form a 

stable triple helix conformation [47]. Self-assembled PA nanofibers can have fiber 

diameters as small as 10 nm and pore sizes of 5-200 nm (well within the range of the 

native ECM and significantly smaller than those produced through electrospinning) 

[46][48]. Cells cultured in self-assembling peptide scaffolds have been reported to show 
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functional cell behaviors and in some instances improved proliferation and differentiation 

[48][49]. However, the poor mechanical strength of self-assembled PA nanofiber 

scaffolds allows them to be used only under certain conditions; this technique has shown 

great promise when utilized in concert with other materials and/or techniques or when 

employed for purposes other than a stand alone tissue scaffold [49]. The Stupp laboratory 

has contributed significantly to the development and advancement of this technique. For 

example, these researchers developed heparin binding peptide amphiphiles (HBPAs) to 

bind and deliver growth factors through bioactive heparin [50]. Diabetic rats were 

transplanted with isologous islets and HBPA growth factor delivery scaffolds; results 

showed that blood vessel density in the implantation site and islet engraftment was 

improved and HBPA recipients reached normal blood glucose content at a higher rate 

than controls [50]. In addition, the Stupp laboratory demonstrated PA nanofiber scaffolds 

to be good candidates for use as bioactive implant surfaces [51]. In an effort to turn inert 

titanium foam into a bioactive implant, porous titanium was filled with PA nanofiber 

matrix; after 4 weeks, when used as a bone plug model in rat femurs to help implant 

fixation, bone formation was found inside and around the implant [51]. The development 

of self-assembled bioactive hydrogels has also been explored; the presence of various 

peptides on a simple hydrogel can alter the structure and biological activity of these gels 

[102-104]. Poly(ethylene glycol) (PEG)-based hydrogels containing arginine-glycine-

aspartate (RGD) peptides and matrix metalloproteinase (MMP) substrates may be used 

for higher control over a matrix system [102][103]. In addition, altering the number of 

arms on the PEG macromer building blocks allows for control over the modulus of the 
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gel [104]. While the self-assembly technique produces fibers that very closely 

approximate the size-scale of the native ECM, issues regarding scaffold mechanical 

properties and high complexity limit the use of this method as a large-scale scaffold 

fabrication option. 

 

Phase Separation. To produce highly porous nano-fibrous scaffolds, Ma and 

Zhang utilized the already existing phase separation technique. Using biodegradable and 

biocompatible aliphatic polyesters such as poly(lactide) (PLA) and poly(glycolide) 

(PGA), fiber sizes from 50-500 nm and 98.5% porosities can be achieved by a 

thermodynamic separation of a polymer solution [41][47][52]. To produce these 

scaffolds, a polymer is dissolved in a solution, typically tetrahydrofuran (THF), then 

phase separated thermally or by adding a non-solvent to the polymer solution, creating a 

gel [41] [46] [52]. The solvent is then extracted from the gel using water and the gel is 

frozen and freeze-dried under vacuum [47][52]. Polymer gelation (time and temperature) 

is undoubtedly the most important step in this technique, controlling porosity and fiber 

size [47]. One of the most advantageous characteristics of this technique is that pore size 

and structure can be closely controlled by a number of porogens, such as sugar, inorganic 

salt and paraffin spheres [41][53][54]. However, the high level of control over these 

scaffold characteristics is clouded with issues regarding lingering porogen compounds 

post-extraction. Regardless, cell populations have demonstrated high growth and 

functionality on these scaffolds and these constructs may work well in bone tissue 

engineering [55][56]. In addition, layered phase separation scaffolds are being 
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investigated with various biomolecule coatings (such as matrigel, collagen type I and III 

and elastin) for small diameter tube scaffolds or with multiple polymers (such as 

polyurethane (PU) and collagen) for nerve conduits [57][58]. While this technique is 

simple and consistent, issues regarding porogen extraction, the restricted number of 

usable polymers and the fact that it is not obviously amenable to large-scale production 

limits the practical use of this method for scaffold production[41][47].  

 

Electrospinning. Electrospinning is a non-mechanical processing method that 

can be used to selectively fabricate nano to micron diameter fibers from a variety of 

synthetic polymers and natural proteins [13][61]. Electrospinning uses an electric field to 

process a polymer solution into a fibrous construct (Figure 2.1) [42]. In this process a 

polymer solution or melt is prepared in a suitable reservoir; bench scale devices typically 

use a syringe. This starting material is then charged to a high potential and directed 

towards a grounded target separated from the source by some distance (generally in the 

range of 10-30 cm). Typically, the electrospinning solution is fed at a metered rate into 

the electric field from a blunt-tipped needle. The electric potential drives the solution 

across the air gap that separates the source solution from the target ground. The carrier 

solvent evaporates as the material is driven across the air gap, resulting in the formation 

of discrete fibrils that deposit as a non-woven matrix. The nature of the process allows for 

the production of very small diameter fibrils with interconnected pores [13]. 
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Figure 2.1. Schematic depicting the electrospinning process. A polymer solution or 
melt is charged to a high potential and directed toward a grounded target. The electric 
potential drives the polymer solution across the air gap and as the carrier solvent 
evaporates, discrete fibers are deposited as a non-woven matrix. 

 

The material and biological properties of electrospun scaffolds can be regulated at 

several sites in the electrospinning process. Structural and functional characteristics can 

be modulated through compositional considerations; a variety of natural protein and 

synthetic polymers can be electrospun separately or in tandem to produce blended 

composites [43][62]. Our laboratories have successfully electrospun a wide variety of 

synthetic polymers such as PLA, PGA, polydioxanone (PDS), nylon and nitrocellulose as 

well as natural polymers such as collagen (types I, II, III and IV), gelatin, elastin and 

fibrinogen (Figure 2.2) [13-15][43][60-62][64][65]. Physical properties, including fiber 

diameter and pore dimension, can be regulated by controlling the composition of the 

electrospinning solvent and the identity, concentration, and/or degree of chain 

entanglements (viscosity) present in the starting polymer(s) [13][14][61]. Generally, fiber 
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and pore diameter increase as the starting polymer concentration increases (Figure 2.3). 

During the electrospinning process, fiber alignment and overall scaffold anisotropy can 

be selectively controlled by mandrel speed and polymer concentration [14][63]. Higher 

mandrel rotational speeds and larger fiber diameters yield more highly aligned scaffolds. 

A variety of post-electrospinning processing techniques can be used to further tailor 

scaffold properties; for example, the material properties of a scaffold composed of natural 

proteins can be regulated by varying the degree of cross-linking present in the scaffold 

[64]. Overall, this technique is simple, inexpensive and versatile, allowing for a wide 

range of production materials and scaffold structure. However, there are various 

limitations with electrospinning including fiber sizes that are on the upper scale of fibers 

that approximate the size of those found in the ECM and the use of organic solvents to 

prepare polymers for electrospinning. Published results by Zeugolis et al. maintain that 

electrospun collagen solubilized in fluoroalcohols produces scaffolds that are essentially 

akin to gelatin [97]. Dong et al. recently published a study on the electrospinning of 

collagen from a mixture of phosphate buffered saline (PBS) and ethanol in order to 

overcome these degradation issues [98]. This study demonstrated that scaffold 

characteristics were similar between collagen scaffolds electrospun from PBS/ethanol 

and those electrospun from hexafluoroisopropanol (HFIP) and that the collagen triple 

helix remained intact when electrospun from PBS/ethanol (verified by Fourier transform 

infrared spectroscopy (FTIP)) [98]. 

In summary, our laboratories believe that electrospinning holds great promise. 

Both self-assembly and phase-separation techniques have been used to produce nanoscale 
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scaffolds. However, electrospinning would appear to be a much simpler, more cost-

effective, and highly adaptable fabrication strategy that can be scaled over a wide range 

of production values, factors critical to commercial and clinical success. 
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Figure 2.2 A-C. Scanning electron microscope (SEM) images at 2000x magnification 
of (A) electrospun collagen, average fiber diameter 0.88 ± 0.25 µm, (B) electrospun 
PDS, average fiber diameter 0.88 ± 0.30 µm and (C) electrospun 50:50 PDS:gelatin 
blend, average fiber diameter 0.70 ± 0.23 µm. All scaffolds were processed using 
HFIP. 
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Figure 2.3. Plots illustrating the relationship between fiber diameter (top) or pore size 
(bottom) and starting concentration in electrospun collagen scaffolds. 
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SCAFFOLD ADVANCEMENTS 

 

It is theoretically possible to extract and recover constituents of the native ECM 

and subsequently electrospin this highly heterogeneous blend of proteins into a scaffold. 

Superficially, this approach would appear to have merit; reconstituting the chemical 

composition of the native ECM using a whole tissue extract appears to offer a 

straightforward answer to a difficult problem. However there are several considerations 

that argue against this strategy. Notably, the clinical use of a material composed of such a 

complex mixture of proteins and antigenic determinants can be expected to aggravate 

wound healing by inducing a pronounced inflammatory response. The dynamics of 

electrospinning complex mixtures of proteins has not been explored to any great extent. It 

is clearly possible, and very likely, that novel polymers composed of proteins that do not 

normally co-assemble in vivo will group together within the electrospinning jet. “Multi-

polymeric fibers” produced in this fashion may exhibit unique functional properties, but 

the risks of adverse immune reactions would appear to obviate the use of this type of 

material, even if it is prepared from an autologous source. It seems more likely that a 

more “minimalist” approach will dominate in the design of scaffolds. The next generation 

of scaffolds may well function as templates that can be used to control cellular phenotype 

yet contain the information necessary to “program” the local cell population to remodel 

the microenvironment into the appropriate composition. 
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Variable Scaffold Composition. Materials native to the ECM are a natural 

choice for use in scaffolds. The rapid infiltration of cells into electrospun collagen 

scaffolds suggest that producing scaffolds composed of materials already found in the 

ECM and fibrils that approach the diameter of native fibrils imparts unique biological 

properties to the scaffolds [42]. Collagen is the most abundant protein in mammals and 

acts as the major structural protein in skin, bones and tendons. Thermal denaturation of 

the collagen protein produces gelatin; this denaturation breaks the collagen triple helix 

into random coils, reducing the mechanical properties of the protein [15]. Experiments 

conducted in our laboratory indicate that implanted gelatin scaffolds appear to induce 

significant inflammation and retard cell penetration. Conversely, implanted collagen 

scaffolds appear to cause minimal inflammation and promote cell penetration (Figure 

2.4). However, matrix synthesis and degradation, as well as cellular differentiation, 

appear to occur more readily with dermal fibroblasts plated onto gelatin scaffolds versus 

collagen scaffolds [67]. These results may be indicative of some of the design oversights 

of earlier generations of scaffolds. In terms of timing, scientists often focus on the 

provisional matrix; an “immature” scaffold found in the early stages of wound healing 

and predominantly composed of fibrin, fibronectin and hyaluronic acid. However, 

scaffolds are often composed of materials, such as collagen, that represent a “mature” 

matrix and, on a cellular level, may indicate an already remodeled would bed. The 

possible problem in this scenario is the placement of a “mature” matrix in an environment 

primed to respond to an “immature” matrix; which may explain why a number of cellular 

processes crucial to wound healing appear to occur more readily on scaffolds composed 
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of gelatin [67]. Generally, the constituents and signals in the scaffold environment must 

adapt and continue the wound healing process to reflect the material in place. It is 

possible that an appropriate scaffold template could simply initiate a series of events that 

would eventually result in the total integration of the scaffold. 
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Figure 2.4 A-F. Trichome stained fibers of dermal tissue recovered from full 
thickness dermal wounds prepared on guinea pigs and implanted with electrospun 
collagen or gelatin scaffolds. In these experiments, cross-linked (0.5% 
gluteraldehyde/ethanol) electrospun type I collagen and gelatin scaffolds 
(approximately 150-250 μm thick and of varying fiber and pore size) were immersed 
in an antibiotic solution, covered with a silver impregnated dressing (to suppress 
bacterial growth) and sutured onto the dorsum of guinea pigs. Tissue samples were 
recovered for histological evaluation after 7 days.  Each image was taken at the margin 
of the injury site, with healthy tissue to the right (mature, intact endogenous tissue is 
stained blue). Dermal wound implanted with electrospun type I collagen, (A) average 
fiber diameter 280 nm, average pore size 500 nm2, (B) average fiber diameter 670 nm, 
average pore size 3720 nm2 and (C) average fiber diameter 1000 nm, average pore size 
3550 nm2. Dermal wound implanted with electrospun gelatin, (D) average fiber 
diameter 240 nm, average pore size 440 nm2, (E) average fiber diameter 470 nm, 
average pore size 1340 nm2 and (F) average fiber diameter 660 nm, average pore size 
5280 nm2. After 7 days, the collagen implants appeared to be infiltrated with cells and 
had minimal inflammation; the gelatin implants were not highly penetrated and had a 
large magnitude of inflammation. 
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The wide range of both natural and synthetic materials that can be utilized in 

electrospinning represents a substantial advantage to this technique. While natural 

polymers already contain the binding sites and signaling capabilities needed by cells (a 

quality markedly absent in synthetic polymers) there are some limitations to natural 

polymers, including issues with immunogenicity, degradation, reproducibility and poor 

material properties (Figure 2.5) [41][66]. While the molecular structure of synthetic 

polymers (e.g. PLA, PGA) does not mimic the ECM, this class of materials has been 

highly researched, in part because of the capability to engineer scaffold material 

properties to enhance cell function. Material properties represent a critical structural 

variable in the design of scaffolds; in wound healing, material properties (specifically 

stiffness) have been implicated in the modulation of cellular phenotype, wound/cellular 

contraction and matrix remodeling (Figure 2.6) [68]. Product specifications targeted to 

bone reconstruction often require material properties that reach beyond what most natural 

materials can provide. For example, Lu et al. fabricated an electrospun scaffold 

composed of bioactive glass fibers that demonstrated an elastic modulus close to that of 

bone [69]. Obviously, the use of and availability to electrospin such a wide range of 

synthetic materials is an invaluable benefit to using the electrospinning technique. 
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Figure 2.5. Plot illustrating the vast differences in the peak stress properties of natural 
versus synthetic electrospun scaffolds. Electrospun scaffolds were cut into dumbbell 
shaped samples using a die punch (2.67 mm wide, gauge length of 0.295 mm) and 
tested to failure at an extension rate of 10 mm/min. (A) Electrospun collagen, average 
fiber diameter 0.88 ± 0.25 µm. (B) Electrospun gelatin, average fiber diameter 0.85 ± 
0.26 µm. (C) Electrospun PDS, average fiber diameter 0.88 ± 0.30 µm. 
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Figure 2.6 A-B. Confocal images of human dermal fibroblasts (HDFs) plated for 24 
hr onto electrospun collagen scaffolds (red) cross-linked to varying degrees. (A) 
Scaffolds with a modulus of < 0.1 MPa (low degree of cross-linking) exhibited small 
fibrous arrays of α-SMA (green). (B) Scaffolds with a modulus of 0.2-0.3 MPa 
(medium degree of cross-linking) revealed small α-SMA foci. (C) Scaffolds with a 
modulus of > 0.3 MPa (high degree of cross-linking) showed no evidence of α-SMA. 
The presence and nature of the α-SMA in panels A and B indicates a shift to an 
intermediate proto-myofibroblast phenotype. 
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Electrospun blends (separate fibers of more than one material within the same 

scaffold) and/or hybrids (a mixture of more than one material within a single fiber) may 

be promising for producing a functional scaffold (within the caveats discussed 

concerning the expression of unexpected antigenic considerations). Electrospun scaffolds 

composed of highly original blends have been investigated, including such unusual 

candidates as a keratin/fibroin blend, collagen/silk fibroin hybrid and a zein (a plant 

protein derived from maize)/hyaluronic blend have been investigated [70-72]. The long-

term efficacy of these compositions awaits further study. Additionally, hybrid scaffolds 

composed of purely synthetic materials, poly(ε-caprolactone) (PCL)/poly(lactide-co-

glycolide) (PLGA), have shown promise as biodegradable guidance conduits in 

transected sciatic nerves [73]. Hybrids and blends of a combination of both natural and 

synthetic materials also have great potential, possibly creating a scaffold that is both 

biologically and biomechanically advantageous. Hybrids of collagen/elastin/PCL and 

gelatin/PCL have demonstrated favorable characteristics that may be valuable for use in 

cardiovascular tissue engineering, while blends of aligned collagen/PCL fibers may have 

future use in patients with large skeletal muscle defects [74][75]. Ko et al. has also 

reported positive results by electrospinning PLA with nano-sized demineralized bone 

powders (DBPs) [76]. PLA/DBP and PLA scaffolds implanted into rats with skull defects 

showed a greater amount of newly formed bone in the defect area with the PLA/DBP 

scaffolds, indicating a potential scaffold for the regeneration of bone tissue [76]. 

Additionally, electrospun scaffolds have recently been investigated for their potential use 

in the production of biosensors. Blended bovine serum albumin (BSA) and poly(ethylene 
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oxide) (PEO) was electrospun into nanofibers and stained with fluorescein isothiocyanate 

(FITC) [77]. The FITC labeled fibers were demonstrated to be pH sensitive and could be 

used as a subtle pH sensor, possibility monitoring the biological activities of cells. 

Multi-layered scaffolds that better mimic the variable nature of the native ECM 

are also promising for the generation of a functional scaffold. These layering techniques 

can range from simple acellular sequentially electrospun layers to more complex 

constructs that contain a variety of materials and cell types. Pham et al. demonstrated the 

generation of a PCL scaffold composed of multiple layers of nano or microfibers; the 

objective was to produce a scaffold with both large pores and small fibers [100]. The 

major concern with sequential layering is the possibility of delamination of the individual 

layers. Yang et al. produced cell-fiber multilayered structures completely within the 

electrospinning system [101]. This method involved electrospinning a collagen:PCL 

mixture onto a collection plate, then seeding with human dermal fibroblasts and/or 

epidermal keratinocytes (directly within the electrospinning system) and continuing this 

process until the desired thickness was achieved [101]. While this method would appear 

to be less susceptible to delamination of layers, concerns do arise regarding the placement 

of cells within the electrospinning system; namely cell exposure to the electric field and 

organic solvents used during the electrospinning process. 

  Coating of electrospun fibers is another method for tailoring the biological and 

mechanical properties of a construct. This approach lends itself nicely to electrospun 

scaffolds composed of synthetic fibers; the addition of a natural material on the surface of 

the synthetic fibers may greatly improve the surface properties of the scaffold, possibly 
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enhancing cell attachment and proliferation. Additionally, any issues concerning 

degradation and poor material properties for an electrospun scaffold composed of natural 

materials are resolved. PCL, a frequently used material because of its slow degradation 

rate and favorable material properties, is often electrospun and coated with natural 

materials such as collagen and gelatin [41][78-80]. Plasma treatment, overnight soaking 

in a polymer solution and layer-by-layer self assembly are coating techniques that have 

demonstrated enhanced attachment, spreading and proliferation of cells cultured on the 

scaffolds [78-80]. Additionally, in an attempt to create a functional esophagus substitute, 

Zhu et al. investigated the coating of poly(L-lactide-co-caprolactone) (PLLC) with 

fibronectin (Fn) via polyester aminolysis then Fn coupling using gluteraldehyde, with 

encouraging results [81]. Researchers have also taken to coating synthetic electrospun 

fibers with more complex materials. Using the plasma treatment method, Jia et al. 

immobilized soluble eggshell membrane protein (SEP) onto electrospun PCL fibers; SEP 

is the membrane between the egg white and inner egg shell and consists primarily of 

collagen (types I, V, and X), osteopontin and sialoprotein (proteins important in bone 

remodeling) [82].  

 

Adjustable Scaffold Architecture. The architecture of the ECM plays a crucial 

role in the overall function of a tissue and varies from tissue to tissue. It would seem that 

scaffolds should, at the very least, exhibit the gross structural properties of the tissue that 

it is designed to reconstruct. Engineered scaffolds must also have pores that allow for cell 

penetration, capillary in-growth and oxygen delivery/nutrient exchange. The flexibility of 
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the electrospinning process allows for the modification of many characteristics of an 

electrospun scaffold, i.e. material, fiber alignment, material properties, pore size and fiber 

size.  

Varying the degree of fiber anisotropy (alignment) present in an electrospun 

scaffold can be used to impart unique material and biological properties to a construct. In 

conventional electrospinning systems the degree of fiber alignment present in an 

electrospun scaffold can be controlled through the manipulation of the starting 

concentrations of polymer present in the electrospinning solutions and/or the speed of 

mandrel rotation [14]. The whipping motion that develops within the charged jet that is 

used to produce very small diameter fibers makes it difficult to induce anisotropy in this 

type of construct. As fiber diameter increases, the inertia of the charged jet dampens this 

whipping motion making it possible to use a rotating mandrel to collect, and induce, fiber 

alignment (Figure 2.7). Under ideal conditions the extent of fiber alignment can be 

modulated by varying the rotational speed of the collecting mandrel (Figure 2.8) [14][63].  

In addition, electrospinning systems utilizing a gap method can also produce highly 

aligned fibers. Klinkhammer et al. demonstrated the use of this method by 

electrospinning PCL using dual, rectangularly shaped grounded collectors placed 

approximately 4 cm apart. Highly aligned fibers were collected and suspended in the air 

between the parallel collector bars [99]. We have examined this relationship using the 

fast Fourier transform (FFT) to measure and assign specific values of alignment to 

scaffold fibers; we then systematically conduct materials testing as a function of the 

degree of alignment [14][63][83]. From a biological standpoint, fiber alignment can be 
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used to provide guidance cues and regulate cell shape. Chow et al. successfully 

investigated the use of scaffolds composed of highly aligned PDS to guide neurite and 

astrocyte growth along fibers to stimulate axonal regeneration in injured peripheral and 

central nervous system environments [84]. 
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Figure 2.7 A-B. Schematic depicting the motion that develops within the charged jet 
as it moves across the electrospinning air gap. (A) Smaller fibers exhibit a 
considerable whipping motion, making it difficult to induce anisotropy. (B) As fiber 
size increases, the whipping motion dampens, making it possible to create scaffolds 
composed of aligned fibers. 
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Figure 2.8. FFT analysis of scaffold alignment as a function of mandrel RPM. 
Various starting concentrations of electrospun gelatin (80, 100, 130, 150 mg/ml) were 
directed toward a mandrel rotating at 200 (top), 2000 (middle) and 4000 RPM 
(bottom). The extent of fiber alignment varied by fiber size and can be controlled by 
changing the rotational speed of the collecting mandrel. A higher peak indicates a 
larger degree of fiber alignment within a scaffold.
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There are nearly endless possibilities regarding the overall shape and size of an 

electrospun scaffold; these characteristics are controlled by the mandrel used during the 

electrospinning process and the quantity and placement of fiber deposition. While flat 

mats are commonly utilized, electrospinning can be used to produce a variety of shapes 

and configurations; electrospun tubes are explored for their possible use in blood vessels 

and nerves. Small diameter vascular grafts using electrospun silk fibroin tubes were 

successful cultured with human endothelial cells and smooth muscle cells and reported 

burst strength and tensile properties similar to those of native vessels [85]. Aligned 

electrospun chitosan mesh tubes cultured with schwann cells may represent a functional 

substitute for autogenous nerve grafts [86]. The control over the quantity and placement 

of the electrospun fibers onto a mandrel allows for great variance in the overall thickness 

and shape of a scaffold. Matsuda and Kawahara have investigated the production of 

flexible catheter tips by electrospinning tubular scaffolds with gradient wall thickness, 

tube diameter or Young’s modulus [87]. Research in the flexibility variation of 

electrospun scaffolds is applicable to many areas of tissue engineering.  

 Scaffold fiber and pore size can be adjusted by altering the starting 

electrospinning solution; in general, fiber diameter and pore size track together (e.g. 

small fibers and small pores). Traditionally, considerable effort has been expended to 

examine how average fiber diameter impacts scaffold performance. However, pore size 

represents an important variable in scaffold design; pore size must be sufficient enough to 

allow for cell penetration and the formation of blood vessels. HDFs cultured on highly 

porous PLGA scaffolds showed higher levels of viability and underwent more scaffold 
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migration and infiltration than controls [81]. Pore size can be manipulated independent of 

fiber size by several methods. Zhu et al. utilized a very slowly rotating frame cylinder 

with metal struts to increase the overall porosity and individual pore sizes of a scaffold 

[81]. The frame cylinder mandrel functions to alter the electrostatic forces driving the 

fibers; high density fibers are driven to deposit onto the metal struts while low density 

fibers are driven to deposit between the metal struts, producing a highly porous scaffold 

[81]. Baker et al. increased scaffold porosity by co-electrospinning PCL, a slowly 

degrading material, and PEO, an aqueous soluble material [96]. The PEO was used as a 

sacrificial material and removed post-electrospinning by placement in aqueous solution; 

when cultured with mesenchymal stem cells (MSCs), PCL scaffolds with a large 

sacrificial PEO component (greater than 40%) showed markedly improved cellular 

infiltration [96]. The use of doping materials can also be exploited to regulate the pore 

size of electrospun materials. For example, cryogenic electrospinning uses the 

simultaneous deposition of ice crystals and electrospun fibers onto a cooled mandrel (the 

scaffold is immediately freeze dried to remove the ice crystals) to increase pore size. 

Subcutaneous implant studies conducted in rats detected improved infiltration and 

vascularization when compared to conventionally prepared electrospun scaffolds [88]. 

Post electrospinning processing methods also have a direct impact on scaffold 

performance. Scaffolds composed of natural proteins must be cross-linked to maintain the 

structural integrity of the construct. Glutaraldehyde solutions or vapors have been 

commonly used to cross-link protein based scaffolds. The glutaraldehyde cross-linking 

technique is inexpensive, efficient, cross-links over a variety of distances and reacts with 
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many of the amino groups present in a protein [64]. The extent of cross-linking in an 

electrospun scaffold is a function of the percentage of glutaraldehyde present in the cross-

linking solution. The degree of scaffold cross-linking increases as the percentage of 

glutaraldehyde present increases but eventually reaches saturation where no more cross-

linking can occur (Figure 2.9) [89]. However, there may be some cytotoxity and 

calcification issues associated with this fixation agent [90]. Other methods of scaffold 

cross-linking have been developed, including a carbodiimide/ethanol technique. 

Carbodiimide is a zero-length cross-linker that has shown nominal potential cytotoxity 

issues and can be used to modulate material properties similar to (and in some instances, 

better than) glutaraldehyde fixation [64]. 
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Figure 2.9. Plot and table demonstrating electrospun collagen scaffold cross-linking 
and material properties as a function of glutaraldehyde fixation. The extent of cross-
linking increases as a higher volume of glutaraldehyde is present in the cross-linking 
solution (until saturation is reached).   

 

 

 

 48



www.manaraa.com

   

Scaffold Bio-Techniques. Scaffold performance can also be regulated by the 

addition of specific factors directly into the electrospinning solution. For example, 

growth factors, pharmaceuticals and cells can be processed directly into a construct to 

regulate overall functionality. Successful incorporation of human foreskin fibroblasts and 

human-adipose derived adult stem cells into electrospun polyvinyl alcohol (PVA) 

nanofibers (a technique known as “cell electrospinning”) was demonstrated by van Aalst 

et al [91]. Cells were grown to confluence, re-suspended in PBS, solubilized in PVA and 

electrospun at 20 kV in a chamber with constant CO2 flow. The collector plate for the 

cell/PVA solution was a grounded aluminum disk set in a polycarbonate container filled 

with PBS. Post electrospinning assays demonstrated that cells incorporated into the PVA 

nanofibers upheld viability, proliferation and function [91]. Growth factors can also be 

incorporated into electrospun scaffolds by adding them directly to the pre-electrospinning 

solution. Research by Fu et al. involving the incorporation of bone morphogenetic 

protein-2 (BMP-2) into hydroxylapatite (Hap)/PLGA nanofibers demonstrated 

maintained BMP-2 biological activity in vitro and in vivo; furthermore, scaffolds 

containing encapsulated BMP-2 showed improved bone healing potential [92]. 

Electrospun scaffolds intended for chemotherapy have also been investigated; in vivo 

studies with PLGA electrospun nanofibers loaded with paclitaxel (a pharmaceutical used 

in cancer chemotherapy) showed sustained released and improved tumor inhibition [93]. 

Additionally, a two stream electrospinning set-up of poly(ester urethane) urea (PEUU) 

and PLGA dosed with tetracycline hydrochloride (tet) has been investigated and 

demonstrated strong and viable antibacterial activity when implanted in vivo [94]. Rate 
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of release is also being investigated; Maretschek et al. have developed a technique to 

control protein release profiles using electrospun blends of PLLA and hydrophilic 

polymers [95]. However, there is a potential problem when incorporating 

pharmaceuticals (and growth factors and other peptides) into electrospun scaffolds: 

solvent induced-damage to the factors that have been processed directly into the fibers. 

To circumvent this issue, we have developed a method to trap our active agents into 

nano-to-micron scale alginate beads and process those supplemented beads directly into 

our electrospun scaffolds, sequestering the incorporated agents away from any potential 

effects of the solvent (Figure 2.10). 
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Figure 2.10. Images demonstrating the presence of alginate beads within an 
electrospun PDS scaffold. (Left) SEM image at 2000x magnification. (Right) 
Brightfield image with FITC labeled antibodies (green) trapped within the alginate 
bead. 
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CONCLUSION 

 

In order to be clinically relevant, scaffolds must mimic critical elements of the 

native ECM. Defining the nature of these elements remains an active component of the 

research endeavor. Fundamentally, scaffolds must provide the structural integrity 

necessary to support normal cell function and interaction in three-dimensional space. 

While self-assembly and phase separation are excellent nanofiber production techniques, 

the ease and versatility of the electrospinning process allows for the fabrication of 

scaffolds composed of a variety of materials in a wide range of shapes and sizes. 

Continued innovation in the electrospinning field has shown promise and progress 

towards the development of functionally relevant scaffolds. Electrospun scaffolds 

composed of both natural and synthetic materials (either electrospun as a blend or hybrid 

or coated post-electrospinning) that work together to provide structural integrity while 

also providing the biological cues needed by cells represents a particularly attractive 

avenue of research. Progress regarding scaffold composition, in conjunction with the 

continued development of methods designed to control the gross and more subtle aspects 

of scaffold architecture and function, should yield insights into the processes that regulate 

normal tissue hemostasis. Finally, the successful addition of cells, pharmaceuticals and 

growth factors into scaffolds is creating an even more versatile nanofiber material. 

Research in tissue engineering will likely continue to characterize the immense structural 

and molecular distinctions of the native ECM and use this information to fabricate 

custom scaffolds according to their placement and function. 
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CHAPTER 3 Measuring Fiber Alignment Using the Fast Fourier 

Transform 

 
Preface: The following manuscript appeared in the Journal of Biomaterials Science, 

Polymer Edition, 2007, volume 19, pages 603-621 [83]. The work included is intended to 

be a detailed guide to clarify the theory and practice of using the fast Fourier transform 

to measure scaffold fiber alignment. Additionally, various imaging and filtering 

modalities were examined in order to expand the use of this powerful characterization 

tool.   
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ABSTRACT 

 

In this study we describe how to use a two dimensional fast Fourier transform (2D FFT) 

to measure fiber alignment in electrospun materials. This image processing function can 

be coupled with a variety of imaging modalities to assign an objective numerical value to 

scaffold anisotropy. A data image of an electrospun scaffold is composed of pixels that 

depict the spatial organization of the constituent fibers. The 2D FFT function converts 

this spatial information into a mathematically defined frequency domain that maps the 

rate at which pixel intensities change across the original data image. This output image 

also contains quantitative information concerning the orientation of objects in a data 

image. We discuss the theory and practice of using the frequency plot of the 2D FFT 

function to measure relative scaffold anisotropy and identify the principal axis of fiber 

orientation. We note that specific degrees of scaffold anisotropy may represent a critical 

design feature in the fabrication of tissues that will be subjected to well-defined uniaxial 

mechanical loads. This structural property may also represent a source of guidance cues 

that can be exploited to regulate cell phenotype.  
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INTRODUCTION 

 

Electrospinning technology shows great potential as a gateway to the 

development of physiologically relevant tissue engineering scaffolds [66]. This 

nonmechanical process has been used to fabricate natural protein polymers [13][61][62], 

biocompatible synthetic polymers [105][106] and blends of natural and synthetic 

polymers [15][43] into tissue-engineering scaffolds composed of nano-to-micrometer 

diameter fibers. The non-woven nature of the electrospun scaffold results in a tissue-

engineering platform with a large surface area and highly interconnected pore spaces 

[107]. This architecture mimics the organization of the native extracellular matrix and 

can be tailored to selectively support a wide variety of cell types.  

The elaborate and interconnected network of the native extracellular matrix 

exhibits varying degrees of anisotropy. The recapitulation of this structural feature may 

represent a critical design feature in the fabrication of tissue-engineered tendons, 

ligaments, blood vessels, and other organs that may be subjected to uniaxial mechanical 

loads. This is especially true in light of growing evidence that fiber alignment and overall 

scaffold anisotropy play central roles in defining the material properties of electrospun 

materials [14][63][108]. Anisotropic properties can also be expected to represent a source 

of guidance cues that can be exploited to regulate cell phenotype, cell migration, and the 

distribution of cells within an engineered tissue [45][84]. Our goal is to develop 

noninvasive techniques that can be used to objectively measure fiber alignment and 

overall scaffold anisotropy.  
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Morphological techniques and destructive materials testing strategies have been 

used to illustrate and detect anisotropy in electrospun materials. For example, we, and 

other authors, have used representative scanning electron micrographs to demonstrate 

fiber alignment in scaffolds prepared from various electrospun polymers 

[13][106][109][110]. This approach lacks precision and is obviously highly subjective. 

Materials testing can be used to detect directional bias and evidence of scaffold 

anisotropy [106]. However, without an objective measurement of fiber alignment, it is 

difficult, at best, to determine how specific degrees of anisotropy might contribute to the 

biological, and mechanical, performance of a given scaffold.  

Optical techniques, that are non-destructive, such as laser scattering, have been 

used to evaluate fiber orientation in valve leaflets [111][112]. This elegant technique can 

resolve information to the level of individual fibers; however, it requires intensive data 

analysis to extract the descriptive parameters necessary to map the large-scale structural 

properties of a fibrous construct. Derivatives of Fourier transforms have long been used 

to measure the geometric composition of data images [113][114] and, to a lesser extent, 

have been applied to the analysis of biological systems. For example, these algorithms 

have been used to evaluate the impact of specific genetic manipulations on cardiac 

cytoarchitecture and myofibrillar organization [115]. In limited applications of this 

technique, electrospun scaffolds have been processed for scanning electron microscopy 

and subjected to a custom image analysis strategy designed to track and map fiber 

distribution [108]. Unfortunately, this approach limits data acquisition to surface features 

and the sample is lost to the analysis. In this review, we describe how a two dimensional 
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fast Fourier transform (2D FFT), readily available in a number of programs designed for 

image analysis, can be coupled with a variety of optical imaging modalities to rapidly 

measure scaffold anisotropy [14][63].  
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MATERIALS AND METHODS 

 

Electrospinning. Reagents were purchased from Sigma Aldrich (St. Louis, MO) 

unless noted. Gelatin was suspended at various concentrations (100, 120, 150 or 180 

mg/mL) and agitated in 2,2,2 trifluoroethanol (TFE) for 24 hr [14][15][63]. 

Electrospinning suspensions were loaded into a 20 mL Becton Dickinson syringe capped 

with an 18 gauge blunt tipped needle. The air gap distance between the source suspension 

and the grounded target mandrel was set to 20 cm. A Harvard perfusion pump was used 

to meter the delivery of the electrospinning suspensions to the electric field; an 

accelerating voltage of 25 kV was used for all samples. The positive output lead of a high 

voltage power supply (Spellman CZE1000R; Spellman High Voltage Electronics 

Corporation) was attached by an alligator clip to the blunt tipped needle. A stainless steel 

rectangular (70 mm x 10 mm x 5 mm) mandrel designed to rotate from 0-6000 RPM was 

used as the grounded target. A digital stroboscope (Shimpo Instruments DT3-11A) was 

used to continuously monitor the target RPM. Samples were stored in a desiccation 

chamber to limit hydration prior to analysis.  

 

Scanning Electron Microscopy. Dry, unfixed electrospun samples were sputter-

coated for conventional scanning electron microscopy (SEM, Zeiss EVO 50 XVP). SEM 

images are amenable to 2D FFT analysis; however, data is restricted to the superficial 

surfaces of the specimen. Refer to the text for a discussion of the technical issues 

encountered when using this imaging modality.  
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Light Microscopy. Scaffolds were imaged with a Nikon TE300 microscope 

equipped with a Nikon DXM 1200 digital camera. Images were captured using a 20x 

0.40 n.a brightfield objective and stored as uncompressed .TIF files with an image 

dimension of 3840 x 3072 pixels. The theoretical lateral resolution of the 20x lens used in 

this study is 0.838 µm; the average fiber diameter of the scaffolds presented in this study 

is greater than 0.8 µm. For routine 2D FFT analysis of scaffold structure, objective 

resolving power is matched to average fiber diameter. If an objective with inadequate 

resolving power is used to capture data sets, individual fibers are not detected and the 

resulting image is composed largely of optical noise. In general, this type of optical 

image/data set is unsuitable for analysis. We note, however, that under some 

circumstances the birefringence generated by sub-resolution fibers can be used to 

generate alignment data (see reference 14 for example). In this type of data set, image 

alignment values should be interpreted with caution and an external measure of alignment 

(for example materials testing) should be used to calibrate the reported 2D FFT values 

derived under these conditions. While the selected objective should have sufficient 

resolving power to image individual fibers, we attempt to keep objective magnification to 

a minimum. As objective magnification is increased, the total amount of surface area that 

is available for image capture is reduced. We believe that measurements of scaffold 

anisotropy should be averaged over as large as an area as possible. Local variations in 

fiber alignment can bias the 2D FFT process. If necessary, alignment data can be 

captured from several sites in a scaffold and averaged to circumvent the limitations 

inherent when a small sample surface area must be used to generate an alignment value.  
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Model Scaffold. Thin spaghetti (Mueller’s, American Pasta Company, USA) was 

used to fabricate “model” scaffolds and to demonstrate how the 2D FFT generates and 

encodes alignment data. This material is easy to manipulate and allows for a variety of 

parameters to be explored. The thin spaghetti was arrayed in an uncooked or cooked (al 

dente, 5 minutes) state onto a flatbed scanner. Images were captured at 2048 x 2048 

pixels and stored as grayscale .TIF files.  

 

Confocal Laser Scanning Microscopy. A Leica TCS-SP2 AOBS confocal laser 

scanning microscope was used to capture images of electrospun scaffolds. The pinhole 

was optimized for all images to 1 Airy disk unit. The 514 nm laser line was used to 

illuminate the samples; images were captured at a scan resolution of 2048 x 2048 pixels 

in reflectance mode. Representative cross-sections in the confocal data sets were 

calculated and projected along the X and Y orientations (i.e. XZ and YZ digital slices). 

Electrospun samples were imaged with a 20x (0.70 n.a.) dry objective lens. Total surface 

area measured was 750 x 750 µm. The Voxel dimensions for this image are 0.36 x 0.36 x 

0.36 µm. Confocal three dimensional data sets were compiled as an average intensity data 

image and processed by 2D FFT. Alignment analysis of confocal images is sensitive to 

the method used to compile a two dimensional projection of a three dimensional data set. 

We prefer to use an average projection in this type of analysis. While maximal 

projections can be used, average projections should only be compared to average 

projections and maximal projections should only be compared to maximal projections in 

2D FFT analysis.  
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Demonstration of Scaffold Response to Strain. Scaffold response to uniaxial 

stretch was characterized using a custom-fabricated stretching device. The instrument 

was modeled after a device used in previously published studies to examine cellular 

response to static loads [45]. The device resembles the original design but was 

remanufactured from aluminum to lend additional stiffness to the stretching platform.  

Stretch was applied by a set of calibrated thumbscrews that displace a set of 

specimen clamps a known distance. The stretching device was threaded to the stage of a 

Nikon TE 300 microscope. Dumbbell shaped samples (2.67 mm wide with a gauge 

length of 7.49 mm) of electrospun scaffolds were mounted in the testing apparatus and 

held directly over the objective light path. A given area was repeatedly photographed as 

calibrated degrees of stretch (5, 15, and 25%) were placed across the sample.  

 

2D Fast Fourier Transform. A more detailed description of the 2D FFT 

approach for measuring scaffold anisotropy is presented in the results section of this 

manuscript. All images were stored and analyzed as uncompressed .TIF files to preserve 

image integrity; the image compression used in .JPG format will degrade image integrity 

and should not be used for archival storage. Grayscale 8-bit images were cropped to 2048 

x 2048 pixels for analysis. ImageJ software (NIH, http://rsb.info.nih.gov/ij) supported by 

an oval profile plug-in (authored by William O’Connnell) was used to conduct 2D FFT 

analysis. All alignment data was normalized to a baseline value of 0 and plotted in 

arbitrary units ranging from 0 to approximately 0.15.  
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Angle information concerning the principle direction of fiber alignment must be 

calibrated to the specific version of the NIH ImageJ software and oval profile plug-in 

used for analysis. Convention places the 0° position (Figure 3.1 B) at 3:00 o’clock on the 

unit circle and continues in a counterclockwise fashion with 90° at 12:00 o’clock, 180° at 

9:00 o’clock and 270° at 6:00 o’clock. Some versions of ImageJ (1.36b) altered this 

convention and 0° was placed at 9:00 o’clock and continued in a clockwise fashion. 

Minor corrections were incorporated into our analysis to correct for this condition, but 

may not be necessary for all 2D FFT programs.  

To produce the window mask (Figure 3.3 K), scaffold images were imported into 

and cropped using Adobe Photoshop (Adobe Systems, Inc.). The window mask should be 

constructed with a gradation of grayscale pixels (darkest at the periphery, lightest at the 

inner ring). Scaffold images were cut with the elliptical marquee tool into circular 

samples and the edges were set to feather by 20-25 pixels. These circular data images 

were then placed onto a grayscale window and flattened prior to 2D FFT analysis.  

 

 Materials Testing. Following 2D FFT analysis, samples were subjected to 

materials testing using a Bionix 200 Mechanical Testing Systems instrument equipped 

with a 50 N load cell (MTS Systems Corp, Eden Prairie, MN). Samples were cut into a 

series of dumbbell shaped samples (2.67 mm wide with a gauge length of 7.49 mm). 

Specimen thickness was determined with a Mitutoyo IP54 digital micrometer (Mitutoyo 

American Corp; Aurora, IL). Scaffolds were tested to failure using an extension rate of 

10 mm/min to evaluate the stress, strain and modulus of elasticity [14][63].  
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RESULTS 

 

Overview. The 2D FFT function converts spatial information in an optical data 

image into a mathematically defined frequency domain. This frequency domain maps the 

rate at which pixel intensities change in the spatial domain. Figure 3.1 provides an 

overview of how the output of this process is used to measure fiber alignment. A 

subjective evaluation of the depicted brightfield images (Figure 3.1 A, D and G) indicates 

that each scaffold is composed of fibers with varying degrees of alignment.  

For analysis, grayscale brightfield microscopic images were captured and 

converted to an integer power of 2 pixel dimensions (256 x 256, 512 x 512, 1024 x 1024, 

etc.). If images have been captured in color they must be converted to grayscale for 2D 

FFT analysis. Care should be taken at the time of image capture to optimize sample 

illumination; uneven illumination can complicate and introduce error into the alignment 

analysis (see discussion in normalization section of this document).  

Processing a brightfield data image by 2D FFT produces a frequency plot, or 

power spectrum. This plot is composed of grayscale pixels that are distributed into a 

pattern that can be used to measure the degree of fiber alignment present in an original 

data image (Figure 3.1 B, E and H). The frequency plot produced by NIH ImageJ 

software places low frequency pixels at the origin, or center, of the frequency plot (note: 

selected iterations of the FFT function invert this convention and place low frequency 

pixels at the image periphery). Low frequency signals correspond to domains within the 

original microscopy image that contain pixels of similar values, adjacent pixels do not 
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vary to a great extent in intensity. The bulk of this information originates with the 

background and the overall shape of the image. High frequency pixels are placed away 

from the origin and toward the periphery of the frequency plot. This information 

corresponds to spatial domains that exhibit abrupt changes in pixel intensity. Edges, 

details and noise in the data image all contribute to the generation of high frequency 

pixels.  

When an image of random fibers is processed by 2D FFT, the resulting frequency 

plot contains a cluster of white pixels that are concentrated in a symmetrical, circular 

pattern around the origin (Figure 3.1 B). At this point in the process we rotate the 

frequency plot 90° (the direction is irrelevant) to correct for the inherent rotation of the 

data that is induced by 2D FFT analysis. A circular projection is placed on the frequency 

plot (using the ImageJ circular marquee tool). Using the ImageJ oval profile plug-in the 

pixel intensities are then summed along the radius for each angle of the circular 

projection (0 to 360°; see Figure 3.1 B for an example of a circular projection and a 

single radius). The summed pixel intensities for each radius are then plotted against the 

corresponding angle of acquisition (position of the radial projection on the circular 

projection) to produce a 2D FFT alignment plot (Figure 3.1 C). Typically, the data from 

this analysis is reported for 0 to 180°; the frequency plot is symmetric so a complete 

summation from 0 to 360° is not technically necessary. The images and plots in figure 3.1 

demonstrate this symmetrical property of the 2D FFT process.  

The 2D FFT alignment plot of a random matrix will exhibit 4 peaks that occur 

every 90°. Peaks of nearly uniform height are a hallmark of a scaffold composed of 
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random elements. These peaks reflect low frequency spatial information and edge 

artifacts. An analysis of the scaffold composed of random fibers illustrated in figure 3.1 

A generates a peak 2D FFT alignment value of 0.038 units. For a gelatin-based scaffold 

with this alignment value, there will be no evidence of directional bias during destructive 

materials testing; average stress and strain at failure will be similar regardless of the 

direction that a test load is placed across this type of sample [63]. When brightfield data 

images are processed by 2D FFT, evidence of directional bias in materials testing 

develops at an alignment value of approximately 0.05 units [14][63].  

If a data image containing aligned fibers is processed by 2D FFT, the resulting 

frequency plot contains pixels that are concentrated along a specific axis (Figures 3.1 D, 

E, G and H). An examination of this type of frequency plot prior to rotation reveals that 

the high frequency pixels that report alignment will be preferentially arrayed 90° with 

respect to the principle angle of fiber orientation. By rotating the frequency plot 90° prior 

to the radial summation step, the principle angle of fiber orientation can be directly 

obtained from the alignment plot (e.g. Figure 3.1 F and I). During radial summation the 

preferentially arrayed pixels act to increase the summed pixel intensity value along a 

defined axis, producing a prominent peak in the 2D FFT alignment plot. The 2D FFT 

alignment plots generated from sample scaffolds containing aligned elements exhibit 

asymmetrical peaks, two larger peaks at 90 and 270° and two smaller peaks at 0 and 360° 

(Figure 3.1 F and I). The degree of alignment present in the original data image is 

reflected by the height and overall shape of the most prominent peaks present in the 

alignment plot. A high and narrow peak indicates a more uniform degree of fiber 
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alignment, a broad peak, or a shoulder on the peak indicates that more than one axis of 

alignment may be present. The principal axis of fiber alignment is determined by the 

position of the alignment peaks, in the illustrated examples (Figure 3.1, F and I) the 

principle axis of alignment is in the vertical direction in the processed image.  

Specific degrees of alignment can be correlated with the onset of distinctive 

material properties. These material properties develop largely independent of fiber 

diameter [63]. When processing a brightfield data image by 2D FFT we observe the onset 

of anisotropic properties in an electrospun scaffold of gelatin at a threshold alignment 

value of 0.05 units. For example, the stress at failure for a random scaffold (Figure 3.1 C) 

of electrospun gelatin (2D FFT alignment value <0.05 units) is approximately 0.5 MPa in 

all directions. Once alignment values of 0.05 units are detected this type of scaffold, 

stress at failure will increase incrementally as a function of approximately 0.01 2D FFT 

alignment units. In a moderately aligned scaffold (similar to Figure 3.1 D) with a 2D FFT 

alignment value of 0.05 to 0.06 units the stress at failure increases to 0.75 MPa in parallel 

with the principle axis of fiber orientation. At 2D FFT alignment values of 0.06 to 0.07 

units, stress at failure is approximately 1.0 MPa and, at alignment values of 0.07 to 0.08 

units, stress at failure increases to 1.5 MPA when the test load is applied in parallel with 

the principle axis of fiber orientation [63].  
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Figure 3.1 A-I. 2D FFT analysis of scaffold anisotropy. Bright field images of 
representative electrospun scaffolds (A,D,G). ImageJ frequency plots (B,E,H) and 2D 
FFT alignment plots (C,F,I) for the corresponding bright field images. Note that peak 
shape and height in the 2D FFT alignment plot report the relative degree of alignment 
present while the peak position reports the principal axis of orientation for the fiber 
field. 
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Normalization and Edge Noise. Normalization is necessary to account for 

differences in sample thickness, camera performance, operator preference for 

contrast/brightness, and other variables that impact sample illumination at the time of 

image capture. The end result of this process is to place data generated from a variety of 

images onto a common scale. Figure 3.2 illustrates and provides a validation of the 

normalization process. The raw 2D FFT alignment plots generated from a series of 5 

brightfield microscopic images of a single sample are depicted in figure 3.2 A. Each 

image contained the same field of fibers but was captured at varying light intensities. The 

shape of the data trace for each alignment plot is similar in nature; however, the summed 

pixel intensity values generated from the radial summation step varies considerably for 

each image. Images taken with greater light intensity at image capture have, on average, 

higher pixel values and are displaced upwards on the Y axis. Figure 3.2 B illustrates this 

same set of data after normalization; the 2D FFT alignment plots for the images overlap 

and report a common 2D FFT alignment value (approximately 0.06 units at 90°). These 

results indicate that the 2D FFT approach can be applied to images captured over a wide 

range of conditions. However, note as light intensity increases, the relative amount of 

optical noise present in a brightfield microscopic image also will increase. Detector noise 

functions in an inverse fashion. As light intensity is decreased and detector gain is 

increased to generate an image, electronic noise begins to be incorporated into the data 

set. Noise from either source (optical and/or electronic) can introduce artifacts into a data 

image and adversely impact the 2D FFT process.  
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Under ideal conditions, normalization will place each of the four baseline values 

of the 2D FFT alignment plot in contact with X axis (compare Figure 3.2 A before 

normalization with Figure 3.2 B after normalization). If the normalization factor is too 

large, the calculated alignment value will be underreported (because the baseline values 

of the alignment plot are displaced below the X axis). Conversely, if the factor is not 

large enough, the alignment value will be exaggerated (because the plot is displaced 

upward on the Y axis like the plots illustrated in figure 3.2 A).  

Figure 3.2 C provides an example of normalization. Columns A and B represent 

the radial summation data as exported from ImageJ into an Excel spreadsheet (for brevity 

only the first 130° of data are displayed, the complete set will contain 360° of data). A 

candidate normalization factor can often be selected by copying the original radial 

summation data set (Figure 3.2 C, column B) into a new column and sorting this 

duplicate column in ascending order (Figure 3.2 C, column F). In the illustrated example, 

the pixel intensity value that resides in the 12th position of the sorted pixel intensity 

column was selected as the normalization factor (Figure 3.2 C column F: 106666.26). 

Once a candidate normalizing factor has been chosen, the pixel intensity value for each 

angle in the original radial summation data set (Figure 3.2 C, column B) is divided by this 

value (Figure 3.2 C, Column C). We prefer to rescale the alignment data by subtracting 1 

from the output of this manipulation (Figure 3.2 C, column D - 1 = column E). To 

generate our version of the final alignment plot, the normalized 2D FFT alignment values 

(Figure 3.2 C, column E) are plotted against the angle of acquisition (Figure 3.2 C, 

column A).  
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Normalization is tolerant to a degree of error; small deviations around the “perfect 

value” will not overtly corrupt the alignment plot. Uneven sample illumination at the time 

of image capture will manifest itself at this point in the process. The baseline values of an 

alignment plot generated from an image captured under these conditions cannot be 

uniformly rectified with the X axis; the data trace fails to parallel the X axis. It may be 

necessary to re-capture the original data image under these circumstances; if this option is 

not available it may be possible to apply a rolling filter to the existing image to correct 

the defect (see ImageJ software, select: Process menu, Subtract background, for 

additional strategies and discussion see also reference 116).  

 Edge effects can and will add spurious information to the peaks of an alignment 

plot. The contribution of this of type of noise to a 2D FFT image will be most 

pronounced in a data set containing aligned fibers that are arrayed at approximately 45° 

with respect to the border of the image. The 2D FFT function replicates the data image 

and assembles the duplicate images into a series of “tiles” that resemble a parquet floor. 

The intersection of fiber edges at the interface of the “tiles” in this parquet floor produces 

the bulk of edge noise. Edge noise is usually obvious and can be easily discarded by 

visual inspection of the plotted data. Figure 3.2 B provides an example of a normalized 

2D FFT alignment plot containing a corrected (edge noise removed) and uncorrected 

(edge noise not removed) peak. The corrected peak (seen at 90°) has a 2D FFT alignment 

value of approximately 0.065 units, whereas the uncorrected peak (seen at 270°) has a 2D 

FFT alignment value of approximately 0.10 units. Edge noise is usually very distinctive 

and produces a sharp, prominent spike in the alignment plot. In figure 3.3 D a discrete set 
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of lines (that divide this image into 4 quadrants) is present in the frequency plot. When a 

radial summation is applied to a frequency plot containing this artifact, the resulting 2D 

FFT alignment plot will contain a large spike (as illustrated in Figure 3.2 B).  

 The overall 2D FFT alignment value for a scaffold is determined by visually 

inspecting and selecting the maximal value from the peak of the alignment plot. A highly 

aligned scaffold imaged by brightfield microscopy will produce a 2D FFT alignment 

value of approximately 0.12 units on our scale; for the same fiber field a confocal image 

will generally produce a slightly higher value (see reference 14 for examples).  
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Figure 3.2 A-C. Panel A illustrates the alignment plots for a series of 5 photographs 
taken of the same fiber field at varying light intensities. As the average light 
intensity used to capture an image increases the uncorrected alignment plot is 
displayed upward on the y-axis. The arrow in A denotes a spurious peak associated 
with edge noise. The arrow at the base of the alignment plot (A) denotes the lower 
regions of the trace that should be brought in contact with the x-axis during 
normalization. Panel B illustrates the data depicted in panel A after normalization. 
The arrow in panel B again denotes edge noise, note: normalization does not remove 
this spurious noise. This noise is visually removed from the data set. Actual 
alignment value is denoted by the line at the top of the peak present at approximately 
90°. Panel C illustrates the normalization process. See text for complete description 
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2D FFT Frequency Plot. Model scaffolds were manipulated into varying 

patterns and imaged to demonstrate how scaffold structure modulates the output of the 

2D FFT function and to illustrate how alignment information is encoded and reported by 

the frequency plot (Figure 3.3). First, consider a model scaffold composed of straight 

fibers that have been arrayed into a fan shaped pattern (Figure 3.3 A). If the frequency 

plot is rotated 90° prior to inspection, the high frequency pixels present in this plot will 

be arrayed into a pattern that mimics the fan-shaped array of fibers that were present in 

the original data image. These high frequency pixels are generated by the fiber edges, the 

banded pattern that is evident reflects the spacing of the fibers (Figure 3.3 B). 

Information concerning fiber spacing is usually lost when a “real” scaffold is processed 

by the 2D FFT approach. The fibers of an electrospun scaffold are rarely uniformly 

spaced and they overlap, curve and pass in and out of the plane of focus. The generated 

2D FFT alignment plot of the fan array is noisy and continually changing to report the 

different angles of orientation that occur across the fiber field. Since there is no specific 

orientation present, no favored polarity will be detected and the 2D FFT alignment value 

for this model scaffold will be small (Figure 3.3 M, arrayed fan plot).  

The random model scaffold illustrated in figure 3.3 C is composed of curving 

fibers and likely contains as many fiber edges as the fan shaped model scaffold (Figure 

3.3 A). The pixel values that correspond to these edges must undergo constant 

fluctuations to map the curving trajectory of the fibers present in the spatial domain. The 

frequency plot of this scaffold contains a cluster of low frequency pixels near the origin 

with the high frequency pixels dispersed in a symmetrical pattern about the origin (Figure 
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3.3 D). There is no evidence of a preferential orientation or distribution to these pixels, 

and the 2D FFT alignment plot generated from this data is a smooth trace containing 4 

small, symmetrical peaks (Figure 3.3 M, random fiber plot).  

A field of aligned, slightly undulating fibers (which more closely resembles the 

fibers of an aligned electrospun scaffold, Figure 3.3 E) produce high frequency pixels 

that are preferentially distributed along the vertical axis of the frequency plot (once the 

plot has been rotated 90°, Figure 3.3 F). The 2D FFT alignment plot of this scaffold 

(Figure 3.3 M, vertical aligned wavy plot) contains distinct peaks at 90 and 270° (2D FFT 

alignment value of 0.06 units) and much smaller peaks at 180 and 360° (2D FFT 

alignment value of 0.02 units). The larger peaks report the principle axis of alignment 

while the smaller peaks correspond to background information, noise and edge effects 

(Figure 3.3 M).  

The effect of fiber alignment on the concentration of high frequency pixels along 

a specific axis in the frequency plot is easily demonstrated using a field of fibers that are 

straight and arranged in parallel (Figure 3.3 G, H and M). In order to generate a spatial 

map of the vertical edges of these fibers, the pixels of the data image must undergo 

regular transitions along the horizontal axis in the original data image. The 2D FFT 

reports this condition as a preferential distribution of high frequency information and the 

resulting frequency plot contains pixels that are distributed along a narrowly defined axis. 

When summed, these high frequency pixels produce a characteristic trace on the 2D FFT 

alignment plot. The alignment peaks are narrow and sharply delineated, indicating nearly 

uniform fiber alignment (Figure 3.3 M, vertical aligned fiber plot). If a fraction of the 
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fiber population is oriented off the principal axis of orientation the 2D FFT process will 

produce a broader alignment peak or a peak with a shoulder.  

As noted in the previous sections, edge effects and background noise (and 

detector noise) can “spill over” and obscure data in the 2D FFT frequency and alignment 

plots. This noise effect is quite pronounced in a model scaffold containing aligned fibers 

that are arrayed approximately 45° with respect to the edges of the image (Figure 3.3 I, 

arrow in J indicates noise). Noise of this nature can be greatly diminished by placing a 

grayscale window mask over the fiber field prior to analysis (Figure 3.3 K, arrow in L 

indicates the reduced noise). The unmasked image produces a 2D FFT alignment plot 

with artifacts in the guise of small peaks on either side of the alignment peaks (Figure 3.3 

N, arrows). Processing the image with a window mask removes this spurious information 

without altering the height of the alignment peaks (i.e. 2D FFT alignment value, Figure 

3.3 N). Although this type of mask can be useful in many applications, it reduces the total 

surface area available for analysis. In the illustrated example the spurious peaks are small 

with respect to the alignment peak; in an electrospun scaffold the artifacts produced by 

edge noise and the data encoding alignment will produce peaks of similar magnitude.  

High resolution microscopy can detect and report considerable variation in pixel 

intensity across a single fiber. This type of spatial information can add high frequency 

noise to the 2D FFT frequency plot, partially masking alignment data. SEM images of 

electrospun scaffolds, where information and variations in contrast are resolved across 

the diameter of individual fibers, are particularly susceptible to producing this form of 

interference. One solution that can be applied to reducing this type of interference is to 
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use the Back Scatter mode to capture the images. This imaging mode produces less 

contrast across the individual fibers than conventional imaging modes. High resolution 

pixel noise also can be reduced by passing a Gaussian filter across the original data image 

prior to 2D FFT analysis. This treatment reduces pixel variation and smoothes the data 

set. Conventional smoothing filters should be avoided; these filters can artificially induce 

polarity into a data set. Reducing pixel density at the time of image capture or in a digital 

image prior to 2D FFT processing also can be used to reduce high frequency noise. In 

practice, images should be captured at the same resolution under similar conditions.  

Threshold filters that compress and re-scale data to produce images composed 

exclusively of black and white pixels have utility in the processing of SEM images. Any 

use of a Masking filter, Gaussian filter, rolling ball filter, Threshold filter, or 

manipulation of pixel density should be uniformly applied to each image in a data set that 

is to be compared.  
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Figure 3.3 A-N. Frequency plots generated from model scaffolds. Images of the 
model scaffolds and corresponding frequency plots (A-H) (see text for discussion). 
Panels I-L demonstrate the attenuation of edge effects (arrows in J and L) in a data 
image through the use of a window mask. 2D FFT alignment plots generated from 
model scaffolds and illustrated in frequency plots (M). 2D FFT alignment plots before 
and after removing edge effects (N) from the images depicted in panels I-L. Arrows 
denote edge noise artifacts. 
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Dynamic Applications. The 2D FFT approach can also be used to measure other 

aspects of scaffold structure and performance. For example, we use 2D FFT to examine 

how mechanical loads impact fiber orientation in tissue-engineering scaffolds. Figure 3.4 

illustrates a series of experiments demonstrating the technique. In this experiment we 

sequentially photographed a dry scaffold as we placed a calibrated strain across the 

sample. The resulting images were then be analyzed using the 2D FFT approach. The 2D 

FFT analysis of random scaffolds indicate that fiber alignment remains constant (Figure 

3.4 A), failure occurred at a site distal to the actual domain imaged.  

When a dry scaffold composed of aligned fibers was stretched in parallel with the 

principal axis of anisotropy there was a nominal increase in the 2D FFT alignment value 

prior to failure (from 0.08 to 0.11 units at 5.0% stretch, Figure 3.4 B ). Applying stretch 

in a tangential fashion to an aligned matrix induced modest changes in the principal angle 

of fiber orientation prior to scaffold failure (not shown). We conclude from these 

experiments that strains are not uniformly distributed throughout a dry scaffold, failure 

(fracture) occurs at a specific site in the construct. We believe that fibers in a hydrated 

state would undergo far more re-alignment in response to strain than in a dry specimen.  
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Figure 3.4 A-C. Use of the 2D FFT in dynamic applications and laser confocal 
microscopy. (A) 2D FFT alignment plot of a random scaffold at 0, 5, 15 and 25% 
stretch. Fibers of a dry, random scaffold do not undergo re-distribution in response to 
applied strain. (B) 2D FFT alignment plot of a partially aligned scaffold at 0, 5, 15 and 
25% stretch. A nominal change in fiber alignment was detected in this sample at 5% 
stretch. (C) Confocal data set compiled as an average projection. Subsections 1-4: 
cross-sections imaged in the y-orientation (i.e., y-z planes). Subsections 5-8: cross-
sections imaged in the x-orientation (i.e., x-z planes). Subsection 9: illustrates 
theoretical cross-sectional profiles observed when fibers traverse an optical plane 
(note: simultaneous deviations in x, y, and z planes are not illustrated). 
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Future Directions. Electrospun fibers appear to deposit as discrete layers onto 

the target mandrel. To further modulate the material and biological properties of an 

electrospun scaffold, we are interested in developing strategies to induce more fiber 

entanglement in the Z direction and using 2D FFT to evaluate the trajectory of these 

fibers. For example, consider the confocal image presented in figure 3.4 C that is 

composed of fibers that are predominately arrayed along the vertical orientation of the 

image. Conventional 2D FFT analysis of this confocal image generates an alignment 

value of 0.17 units (moderately aligned for a scaffold captured by confocal imaging). It is 

possible to verify fiber orientation in this scaffold by surveying the confocal three-

dimensional data set in cross-section. Representative cross-sections of the illustrated 

example in the X and Y axis reveals a higher frequency of elongated fiber profiles in the 

Y axis (aligned fibers cut longitudinally, Figure 3.4 C, panels 1-4) than in the X axis. 

This structure occurs because fibers are arrayed in parallel with the Y axis. In contrast, 

fiber profiles in the X axis are predominately round or oval in shape (aligned fibers cut in 

cross-section, Figure 3.4 C, panels 5-8). At present we are adapting our optical methods 

to measure the shape of the cross-sectional profiles of fiber populations in large, three 

dimensional confocal data sets. This information can be used to map and measure the 

trajectory of individual fibers in the X, Y and Z directions (Figure 3.4 C, panel 9). The 

cross-sectional profile of individual fibers also can theoretically be used to extrapolate 

fiber trajectory information using the 2D FFT function.  
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DISCUSSION 

 

Electrospun materials can be uniquely tailored to specific tissue-engineering 

applications to mimic the physical, biological and material properties of the native 

extracellular matrix. For example, fiber diameter and pore dimension of a given polymer 

scaffold can be largely controlled by regulating the concentration of polymer (viscosity 

and degree of chain entanglements) present in the starting solution [14][106] and/or the 

electrospinning air gap, accelerating voltage [109][117][118] and/or target properties 

[14]. Biological activity can be manipulated by controlling fiber identity and the overall 

composition of the electrospun tissue engineering scaffold [15]. Growth factors and other 

pharmaceuticals can be selectively added to the scaffolds during and/or after the 

electrospinning process [119]. Material properties can be modulated by altering scaffold 

structure, composition, and through post-electrospinning processing events that increase 

fiber cross-linking [64].  

The frequency plot of the 2D FFT function has been used to select, identify and 

measure the geometric composition of images in a broad spectrum of applications. 

Quantitative information concerning the orientation of objects in a data image also is 

encoded by this plot. By processing a digital image of an electrospun scaffold with the 

2D FFT function it is possible to extract this information and use this data to assign a 

numerical value to the degree of fiber alignment present in the original sample [63].  

The 2D FFT approach is a relatively simple technique to put into practice; 

however, there are clear limitations. For example, imaging modality and sample thickness 
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must be considered prior to analysis. In brightfield microscopy samples must be thin 

enough to allow light to pass through the specimen. This imaging modality is most suited 

for samples composed of fibers arrayed in a homogenous fashion. Structures that exhibit 

discrete fiber layers that are engineered to display differing degrees of alignment in each 

layer are generally not suited for analysis by brightfield microscopy. This limitation 

exists because fibers out of the plane of focus can participate in generating data that is 

used by the 2D FFT function.  

Constructs composed of complex multiple layers are better imaged by laser 

scanning confocal microscopy, an imaging technique that can be used to capture data 

from specific optical planes. For many proteins and selected synthetic polymers, images 

can be captured using an auto-fluorescence signal. We also have successfully used 

reflectance mode to capture images of scaffolds composed of biological [14] and 

synthetic materials [84]. This approach can be used to capture information for 30-40µm 

of depth in the Z direction. For more extensive penetration, markers may be incorporated 

into scaffolds at the time of electro-processing. If appropriate, standard 

immunohistochemical methods can be used to stain and image scaffolds composed of 

native proteins. For extremely dense or thick (i.e. in the Z direction) electrospun 

constructs, the use of a 2 photon confocal imagining system may be necessary. Note, as 

sample thickness increases, there will be increased photon scatter. Under these conditions 

de-convulsion analysis may be necessary to accurately construct the data set. Three 

dimensional confocal data files, in general, are biased in the Z direction. In cross-

sectional analysis, this bias will take a round profile and elongate it into an oval profile 
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(for an excellent discussion of image restoration and deconvolution see 120). By analogy, 

for a model matrix composed of round spaghetti, Z direction bias would make this pasta 

appear flattened and elongated like linguini when viewed in cross-section. Deconvolution 

corrects this bias by reshaping the point spread function, a manipulation that takes on 

added importance when fiber alignment in multiple dimensions is to be calculated.  

 While we prefer to use confocal microscopy to characterize different fiber layers, 

it also is possible to generate similar information by sequentially sampling a specimen 

during the electrospinning process. In order to conduct this type of analysis the 

electrospinning process must be stopped to isolate a sample of each fiber layer. The 

individual samples can then be imaged and processed by 2D FFT. We do not recommend 

this strategy on a routine basis, unless necessary. Fiber layers may delaminate as a result 

of drying incurred during the sampling intervals, a condition that may adversely impact 

sample integrity and structure.  

Finally, in the analysis of fiber alignment it is critical to consider what precisely 

scaffold anisotropy represents to each individual application. Certainly the 2D FFT 

approach can be used to verify the reproducibility of the electrospinning conditions and 

the structure of a scaffold. However, for most applications, some external measure of 

anisotropy or scaffold performance is usually necessary to calibrate the 2D FFT 

alignment value. For example, our principle objective has been to identify how fiber 

diameter and varying degrees of fiber alignment interact to modulate the material 

properties of an electrospun material [14][63][106]. The stress and strain properties of an 

idealized scaffold composed of random elements should be identical regardless of the 
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testing angle. These material properties can be expected to develop directional bias and 

vary as increasing degrees of anisotropy are introduced into the matrix. We have used 

these characteristic properties to calibrate our 2D FFT alignment values. In our 

laboratories, an archival image of each scaffold is captured and processed for 2D FFT 

analysis. The scaffold is then subjected to materials testing in the parallel and 

perpendicular orientations and analyzed using stress at failure [63]. In conventional 

materials testing this material property appears track most closely with incremental 

changes in fiber alignment.  

Applications in which the central objective is to promote the expression of a 

specific cell phenotype or provide a guidance cue may require a different external 

measure of performance. For example, we have examined how scaffold anisotropy can be 

used to promote neurite outgrowth in specific directions. This body of work suggests that 

electrospun scaffolds do not have to be composed of uniformly aligned arrays of fibers to 

direct the growth of neurons along a predefined axis [84]. Some yet to be defined 

threshold of alignment is necessary to achieve this objective, a result that has direct 

implications in the fabrication of nerve guides and other tissue engineered products 

designed to direct cell phenotype.  

The 2D FFT approach has several advantages, notably, software is readily 

available, easy to implement and very little specialized equipment is needed to generate 

objective measurements of alignment. A variety of different imaging modalities, 

including brightfield, laser scanning confocal and scanning electron microscopy, can be 

used to capture data for analysis. The technique is adaptable and we demonstrated that it 
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can be used quantify dynamic changes in fiber alignment in response to mechanical 

loads. By coupling the 2D FFT approach with laser scanning confocal microscopy it is 

possible to generate alignment data in three dimensions and/or within specific optical 

planes. Notably, the non-destructive nature of the 2D FFT approach makes it possible to 

measure fiber alignment in a specific sample and subsequently use that scaffold in a 

tissue-engineering application. 
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CHAPTER 4 Control of Fiber Alignment in Electrospun Scaffolds 
 

Preface: The following manuscript appeared in Biomaterials, 2006, volume 27, pages 

5524-5534 [14]. The work included demonstrates the effect of fiber diameter and 

mandrel speed on the induction of anisotropy in electrospun scaffolds. Additionally, the 

use of the fast Fourier transform as a tool for measuring the degree of alignment in a 

scaffold is described. The ability to closely control and measure fiber alignment is crucial 

for the production of a scaffold that recapitulates the structure of the native extracellular 

matrix. Additional details regarding the effect of electrospinning voltage and air gap 

distance on the initiation of scaffold anisotropy can be found in Appendix A. 
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ABSTRACT 

 

We describe the use of the fast Fourier transform (FFT) in the measurement of anisotropy 

in electrospun scaffolds of gelatin as a function of the starting conditions. In 

electrospinning, fiber alignment and overall scaffold anisotropy can be manipulated by 

controlling the motion of the collecting mandrel with respect to the source 

electrospinning solution. By using FFT to assign relative alignment values to an 

electrospun matrix it is possible to systematically evaluate how different processing 

variables impact the structure and material properties of a scaffold. Gelatin was 

suspended at varying concentrations (80, 100, 130 and 150 mg/ml) and electrospun from 

2,2,2 trifluoroethanol onto rotating mandrels (200-7000 RPM). At each starting 

concentration, fiber diameter remained constant over a wide range of mandrel RPM. 

Scaffold anisotropy developed as a function of fiber diameter and mandrel RPM. The 

induction of varying degrees of anisotropy imparted distinctive material properties to the 

electrospun scaffolds. The FFT is a rapid method for evaluating fiber alignment in tissue 

engineering materials. 
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INTRODUCTION 

 

The native extracellular matrix (ECM) is comprised of a complex network of 

structural and regulatory proteins that are arrayed into a fibrous matrix [121]. The fibers 

that make-up the backbone of this elaborate network exhibit distinctive, and often times, 

regional, variations in identity, cross-sectional diameter and polarity. For example, the 

ECM of the dermis can be subdivided into two discrete sub-compartments: a deep 

reticular layer and a superficial papillary layer. The reticular compartment is occupied by 

large diameter fibers of Type I collagen and elastin that are distributed into large-scale 

random bundles. Conversely, the superficial papillary layer of the skin contains small 

diameter fibers of Type III collagen and elastin that exhibit a modest degree of 

anisotropy. This fibrous network defines the bulk material properties of the dermis. 

However, the three dimensional architecture and composition of the dermal ECM also 

functions to store and communicate phenotypic signals to the cellular compartment of the 

skin. These signals modulate cell function during normal hemostatsis and also play a 

central role in modulating the remodeling events that transpire during the wound healing 

process.  The multifunctional nature of the native ECM must be recognized and 

replicated to varying degrees in the design and fabrication of tissue-engineering scaffolds. 

We believe that electrospinning can be used to produce tissue-engineering 

scaffolds that recapitulate key structural features of the native extracellular matrix (ECM) 

[15].  This non-mechanical processing strategy can be used to selectively fabricate sub-

micron to micron diameter fibers from a variety of synthetic polymers 
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[78][106][122][123] and natural proteins [13][15][61][62][65][124]. Fiber diameter and 

pore dimension can be regulated in the electrospinning process by controlling the 

composition of the electrospinning solvent and the identity, degree of chain 

entanglements, and concentration of the starting polymer [117]. Fiber alignment can be 

manipulated by controlling the motion of the collecting mandrel with respect to the 

source electrospinning suspension [61][106][110] and/or through electric field effects 

[109]. Conventional morphometric techniques are typically used to characterize the basic 

physical properties of electrospun scaffolds [13][15][110][122]. 

We believe that efforts to produce clinically relevant tissue-engineering scaffolds, 

using the electrospinning process, can benefit from strategies that objectively measure 

and assign a value to fiber anisotropy. Varying the degree of fiber anisotropy present in 

an electrospun scaffold can be expected to impart unique material properties to the 

construct. Fiber anisotropy also may represent a source of guidance cues that can be 

exploited to regulate cell phenotype, cell distribution and the macroscopic properties of 

an engineered tissue.  

Laser scattering has been used to evaluate fiber alignment in valve leaflets 

[111][112]. This elegant technique can be used to resolve information at the individual 

fiber scale. However, intensive data analysis is necessary to map the large-scale structural 

properties of a sample. We, and other authors, have used representative scanning electron 

micrographs to demonstrate fiber alignment in electrospun materials 

[13][105][106][109][110]. Unfortunately, this approach is highly subjective and is 

restricted to generating data sampled from the superficial surfaces of the constructs. In 
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this study, we use digital brightfield and confocal microscopy to capture images of 

electrospun scaffolds and demonstrate the use of the fast Fourier transform (FFT) to 

measure fiber alignment in the scaffolds. Our approach has several advantages; it is rapid, 

non-destructive and can be used to rapidly integrate alignment data over a relatively large 

area.  
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MATERIALS AND METHODS 

 

Electrospinning. Reagents were purchased from Sigma Aldrich (St. Louis, MO) 

unless noted. Gelatin was suspended in 2,2,2 trifluoroethanol (TFE) for 48 hr prior to 

electrospinning. This time interval was determined empirically. In preliminary 

experimentation, gelatin was suspended for 12, 24, 48 or 96 hr in TFE. The 48 hr time 

point produced the most consistent fiber diameters (not shown). Starting concentrations 

of 80, 100, 130 and 150 mg/ml TFE were prepared. Electrospinning suspensions were 

loaded into a 20 ml Becton Davis syringe capped with an 18 gauge blunt tipped needle. 

Samples were electrospun at 22 kV onto a stainless steel rectangular mandrel (70 mm x 

10 mm x 5 mm) across an air gap of 20 cm. 

The positive output lead of a high voltage supply (Spellman CZE1000R; 

Spellman High Voltage Electronics Corporation) was attached by an alligator clip to the 

blunt end needle. A Harvard perfusion pump was used to meter the delivery of the 

electrospinning suspensions to the electric field. The rate of solvent/polymer delivery was 

set at the maximal rate that did not induce dripping from the tip of the syringe. Starting 

concentrations of 80, 100, 130 and 150 mg/ml were delivered at rates of 12, 20, 21 and 

35 ml/hr, respectively. The target mandrel was regulated to rotate at varying revolutions 

per minute (RPM) including: 200 (we chose to use a nominal degree of rotation in our 

controls to facilitate fabrication of scaffolds for materials testing, which assumes a 

uniform scaffold thickness), 1000, 2000, 3000, 4000, 5000, 6000 and 7000 RPM. A 

digital stroboscope (Shimpo Instruments DT3-11A) was used to continuously monitor the 
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RPM of the target mandrel. Samples were stored in a desiccation chamber prior to 

analysis. 

 

Viscosity Measurements. Gelatin/TFE solutions were suspended for 24 and 48 

hr at varying concentrations. Viscosity measurements were conducted with a Brookfield 

RVDV-III Ultra programmable rheometer using a small sample adapter and spindle 

(SC4-21). Prior to all measurements, the rheometer was calibrated using a viscosity 

standard fluid that was allowed to equilibrate for 30 min before an initial viscosity 

reading was recorded. 

 

Scanning Electron Microscopy. Average fiber diameters and average pore areas 

were determined from samples processed for conventional Scanning Electron 

Microscopy (SEM, Jeol JSM-820).  Dry, unfixed electrospun materials were sputter 

coated and images were captured on Polaroid film, digitized via a flatbed scanner and 

analyzed with NIH ImageTool (UTHSCSA version 3). All measurements were calibrated 

from size bars incorporated into the SEM images at the time of capture.  

Average fiber diameter was determined from measurements taken perpendicular 

to the long axis of the fibers (25 measurements per field). Average pore area (a measure 

of porosity) was determined by measuring the area encompassed by adjacent fibers (at 

least 25 measurements per field). N=3 from independent experiments conducted at 

different time points. Data sets consisting of average fiber diameter and average pore area 

were screened by two-way ANOVA and tested for the effects of the starting 
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concentration and mandrel RPM, P<0.01. A Tukey test was used for Post Hoc analysis; 

significance was defined at P<0.05. 

 

Light Microscopy. All imaging and materials testing was conducted with dry, 

unfixed samples. This approach was selected to allow us to make direct comparisons 

between the different analytical approaches described in this study. For light microscopy, 

dry sheets of electrospun gelatin were cut into 10 mm diameter disks using a circular 

biopsy punch. Samples were imaged with a Nikon TE300 microscope equipped with a 

Nikon DXM 1200 digital camera. Images (3840 x 3072 pixels) were captured with a 20X 

(0.40 n.a.) brightfield objective lens, resulting in pixel dimensions of 0.17 x 0.18 m. 

 

FFT. The FFT was used to characterize fiber alignment as a function of 

electrospinning conditions. The FFT function converts information present in an original 

data image from “real” space into mathematically defined “frequency” space [125]. The 

resulting FFT output image contains grayscale pixels that are distributed in a pattern that 

reflects the degree of fiber alignment present in the original data image. As subjectively 

judged from SEM images, a representative FFT analysis of a “random” matrix and an 

“aligned” matrix are presented in figure 4.1. The FFT of an original data image 

containing random fibers (Figure 4.1 A) generates an output image containing pixels 

distributed in a symmetrical, circular shape (Figure 4.1 B). This distribution occurs 

because the frequency at which specific pixel intensities occur in the data image is 

theoretically identical in any direction. In contrast, the FFT of a data image containing 
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aligned fibers (Figure 4.1 D) results in an output image containing pixels distributed in a 

non-random, elliptical distribution (Figure 4.1 E). This distribution occurs because the 

pixel intensities are preferentially distributed with a specific orientation.  

A graphical depiction of the FFT frequency distribution can be generated by 

placing a circular projection on the FFT output image and conducting a radial summation 

of the pixel intensities for each degree between 0 and 3600, in 10 increments. For 

example, data corresponding to 00 in figure 4.1 C was obtained by summing the pixel 

intensities encountered along that specific radius in the FFT output image depicted in 

figure 4.1 B. The summed value of the pixel intensity was then plotted as a function of 

the degree and in this example provided a value of approximately 0.02 at 00. A similar 

analysis at 1000 in figure 4.1 E generates a value of approximately 0.16. In our analysis 

the pixel intensities were summed along each degree and then plotted between 0 and 1800 

(the FFT is symmetric about the horizontal axis so a pixel summation to 3600 is 

unnecessary). In all images, the FFT data set has been rotated 900 to correct for the 

mathematical transformation inherent to this type of analysis, allowing the principal axis 

of orientation to be directly determined from the position of the peak in the intensity plot. 

The amount of alignment present in the original data image is reflected by the height and 

overall shape of the peak present in this plot (Figure 4.1 C and F).  

For our analysis, digitized SEM images and brightfield light microscopic images 

were converted to 8-bit grayscale TIF files. SEM images were cropped to 1024 x 1024 

pixels and brightfield images were cropped to 2048 x 2048 pixels. Images were processed 

with ImageJ software (NIH, http://rsb.info.nih.gov/ij) supported by an oval profile plug-
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in (authored by William O’Connnell). All FFT data was normalized to a baseline value of 

0 and plotted in arbitrary units, allowing different data sets to be directly compared.  

 

Confocal Laser Scanning Microscopy. To enhance confocal imaging 

TFE/gelatin suspensions were supplemented with 1l/ml CellTracker CM-DiI 

(Invitrogen, USA) and electrospun as described (“random”=80 mg/ml gelatin @ 4000 

RPM or “aligned”=130 mg/ml gelatin @ 4000 RPM). Confocal images can be captured 

using auto-fluorescence, however, when working with small diameter fibers this signal is 

inadequate for image acquisition. Electrospun scaffolds were mounted onto microscope 

slides; registry marks were incorporated onto the surface of the cover slips. The samples 

were imaged by brightfield (widefield) microscopy, photographed and processed for FFT 

analysis of alignment as described above. These same scaffolds were then imaged by 

confocal microscopy using the registry marks to identify the regions captured by 

brightfield microscopy. Samples were imaged with a Leica TCS-SP2 AOBS confocal 

laser scanning microscope. 

The random matrix depicted in figure 4.4 D was imaged with a 40X (1.25 n.a.) oil 

immersion lens. Total surface area measured 185 x 185 m and the total depth in the Z 

direction was 10 m sampled at intervals of 0.162 m. The Voxel dimensions for this 

image are 0.09 x 0.09 x 0.16 m. The aligned matrix depicted in figure 4.4 F was imaged 

with a 20X (0.70 n.a.) dry objective lens. Total surface area measured 750 x 750 m and 

the total depth in the Z direction was 25 m sampled at intervals of 0.36 m. The Voxel 

dimensions for this image are 0.36 x 0.36 x 0.36 m. The pinhole was optimized for all 
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images to the Airy disk. The 514 nm laser line was used to illuminate the samples and 

images were collected with a scan resolution of 2048 x 2048 pixels and saved as TIF 

files. Confocal 3-dimensional data sets were compiled as average intensity and maximum 

intensity projections and processed by FFT. These data were then compared to the FFT 

alignment values derived from the brightfield (widefield) data sets.  Representative cross-

sections in the confocal data sets were calculated and projected along the X and Y 

orientations (i.e. XZ and YZ digital slices).  

 

Materials Testing. Uniaxial materials testing was conducted on dumbbell shaped 

samples of electrospun gelatin with a Bionix 200 Mechanical Testing Systems instrument 

equipped with a 50N load cell (MTS Systems Corp, Eden Prairie, MN). Samples were 

2.67 mm wide with a gauge length of 11.25 mm. Specimen thickness was determined 

with a Mitutoyo IP54 digital micrometer (Mitutoyo American Corp; Aurora, IL). Dog 

bone shaped samples were used to control for grip effects and the geometry of the 

samples to be tested. Samples were tested in the parallel (i.e. in the direction of mandrel 

rotation) and perpendicular orientations (i.e. at 900 to the direction of mandrel rotation) to 

the point of failure at an extension rate of 10 mm/min. Data sets were screened by one-

way ANOVA (P<0.01) to test for the effects of mandrel RPM on material properties. 

Samples that passed normality and equal variance were subjected to pairwise multiple 

comparisons (Tukey test, P<0.05).    
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Figure 4.1 A-F. Representative SEM images of a random matrix (A) and an aligned 
matrix (D). FFT output images (B and E) and radial projection (B). Pixel intensity 
plots against the angle of acquisition for a random matrix (C) and an aligned matrix 
(F). Note the distinctive peak produced by the image containing aligned information 
(F). 
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RESULTS 

 

Fiber Diameter and Pore Area. Average fiber diameters and average pore areas 

in electrospun samples were determined as a function of starting electrospinning 

conditions. Under base line conditions (i.e. mandrel RPM=200) 80 mg/ml suspensions 

produced scaffolds composed of 0.29 ± 0.1 m diameter fibers with pore areas of 0.49 ± 

0.7 m2; 100 mg/ml suspensions produced 2.90 ± 1.2 m diameter fibers with pore areas 

of 67.60 ± 53.0 m2; 130 mg/ml suspensions produced 2.80 ± 1.0 m diameter fibers 

with pore areas of 95.00 ± 80.0 m2; and 150 mg/ml suspensions produced 9.10 ± 2.6 m 

diameter fibers with pore areas of 301.00 ± 224.0 m2. Fibers produced from the 80, 100 

and 130 mg/ml suspensions had a rounded cross-sectional profile. The 150 mg/ml 

suspensions produced fibers with a ribbon-like profile. This conformation is believed to 

develop from the production of a thin walled, hollow fiber that collapses as solvent 

evaporates [118][126]. We note that this phenomenon can potentially increase average 

cross-sectional fiber diameters when samples are measured by SEM. 

Screening the morphometric data sets detected three classes of scaffolds 

composed of distinct fibers and pore areas (P<0.001). These classes consisted of scaffolds 

produced from: I) 80 mg/ml suspensions containing fibers with cross-sectional diameters 

of less than 1 m and pore areas of less than 1 m2, II) 100 and 130 mg/ml suspensions 

containing fibers with cross-sectional diameters between 1 and 5 m and pore areas 

ranging between 20 and 100 m2 and III) 150 mg/ml suspensions containing fibers with 
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cross-sectional diameters greater than 5 m and pore areas greater than 100 m2 (Figure 

4.2 A and D).  

We were unable to definitively resolve the nature of the relationships that exist 

between starting concentration, solution viscosity and fiber diameter. Regression analysis 

examining average fiber diameter as a function of gelatin concentration using a linear 

model generated a R2 value of 0.54 and a second order model gave a R2 value of 0.56 

(Figure 4.2 B, inset). Linear regression analysis examining how solution viscosity varied 

as a function of gelatin concentration provided a R2 value of 0.98, fitting a second order 

function to these data produced a R2 value of 0.99 (Figure 4.2 C, inset).  

 

Impact of Mandrel Rotation. To determine how the rotation of a rectangular 

grounded mandrel affects scaffold structure, we varied the mandrel speed from 200 to 

6000 RPM in 1000 RPM increments. With one exception, fiber diameter was not 

regulated by mandrel RPM. ANOVA testing and post hoc analysis of scaffolds produced 

from the 80 mg/ml suspension sets indicated that fibers deposited onto a grounded target 

rotating at 2000 RPM were, on average, larger than fibers collected at 200 RPM 

(P<0.05). Mandrel RPM did not alter average fiber diameter in scaffolds produced from 

suspension concentrations of 100, 130 or 150 mg/ml under any of the conditions assayed 

(Figure 4.2 A).   

Mandrel RPM had a more pronounced impact on average pore area (Figure 4.2 

D). In scaffolds electrospun from the 80 mg/ml suspensions, average pore area increased 

when collected at 2000 and 6000 RPM versus those collected at 200 RPM (P<0.05). For 
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scaffolds produced from the 100 and 130 mg/ml suspensions, average pore area 

decreased at all mandrel RPMs with respect to 200 RPM (P<0.05). In scaffolds 

electrospun from 150 mg/ml suspensions, average pore area decreased in the 5000 and 

6000 RPM treatment groups with respect to 200 RPM (P<0.05). These data suggest that 

under specific conditions fiber packing is more efficient as mandrel RPM is increased, a 

result that is consistent with the induction of increased fiber alignment. 
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Figure 4.2 A-E. Fiber diameter (A) and pore area (D) as a function of mandrel RPM. 
Bars at 200 RPM indicate three classes of fibers (A) and pore areas (D) detected by 
statistical analysis (P<0.001). Inset (B), 2nd order modeling of fiber diameter as a 
function of starting concentration at 200 RPM, R2=0.56. Inset (C), regression analysis 
of the relationship between starting concentration and solution viscosity, 1st order 
R2=0.98, 2nd order R2=0.99 (depicted). Inset (E), 1st order modeling of pore area as a 
function of fiber diameter at 200 RPM, R2=0.33. Error bars B and E = ± standard 
deviation. 
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Fiber Alignment and Scaffold Anisotropy as Judged by FFT. We used FFT 

analysis of brightfield images to characterize scaffold anisotropy and assign a numerical 

value to fiber alignment. For this type of analysis, the degree of fiber alignment in a data 

image is reported by the height and shape of the peak generated by the FFT plot (Figure 

4.1). The higher the peak, the more precisely aligned the fibers are along a single axis of 

orientation. Gelatin electrospun from a starting concentration of 80 mg/ml did not exhibit 

overt evidence of alignment at any mandrel RPM. The normalized intensity values (or 

FFT alignment value) of these scaffolds did not exceed 0.05 arbitrary units (Figure 4.3 A) 

for any of the conditions assayed and the total area under the curve remained less than 

2.10 arbitrary units (Figure 4.3 E).  

Statistical analysis indicates that scaffolds produced from 100 and 130 mg/ml 

suspensions have similar fiber diameters and pore areas. However, FFT analysis indicates 

subtle differences may exist to distinguish these two treatment groups.  FFT alignment 

values for scaffolds prepared from the 100 mg/ml suspensions sequentially increased as a 

function of mandrel RPM (Figure 4.3 B and E). At 1000 RPM the alignment value was 

approximately 0.02 units for these scaffolds and peaked at 0.08 units in samples collected 

at 6000 RPM. In contrast, alignment values assigned to scaffolds produced from the 130 

mg/ml suspensions were similar in nature and exceeded 0.08 for samples collected at 

1000, 2000, 3000, 4000, and 5000 RPM (Figure 4.3 C and E). These data are consistent 

with our conclusions that pore size decreases with respect to controls in these samples, 

when mandrel RPM is greater than 1000, as a consequence of increased fiber alignment 

(and packing efficiency, see Figure 4.2). 

 106



www.manaraa.com

   

Scaffolds electrospun from starting concentrations of 150 mg/ml produced FFT 

alignment values of 0.08 units at 200 RPM (Figure 4.3 D). This FFT alignment value 

exceeded the values observed for all of the scaffolds prepared from the 80 mg/ml 

suspensions and most of the 100 mg/ml suspensions. These results may explain why pore 

size (Figure 4.2) in the 150 mg/ml samples was not markedly altered until the mandrel 

RPM reached 5000 RPM (Figure 4.3). These fibers already have a high degree of 

alignment and pack efficiently even under baseline conditions.   
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Figure 4.3 A-E. FFT analysis of scaffold structure as a function of mandrel RPM. 
Scaffolds from suspensions of 80 mg/ml (A), 100 mg/ml (B), 130 mg/ml (C) and 150 
mg/ml (D). Total area under the curve for frequency plots (E). 
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Effects of Optical Noise and Image Magnification on FFT Analysis. Images 

captured by brightfield (widefield) microscopy contain considerable information from 

outside the image plane (Z direction) and have limited resolution in the XY plane. For 

example, scaffolds prepared from the 80 mg/ml stock concentrations contain fibers that 

are at, or below, the nominal limits of resolution for a 20X, 0.40 n.a. objective (XY 

resolution=0.278 m). The data images captured with this lens for FFT analysis represent 

a surface area of 0.35 x 0.35 mm; in images cropped to 2048 x 2048 pixels, each pixel 

represents approximately 1.7 x 10-4 mm. The fibers present in brightfield images of 

scaffolds prepared from the 80 mg/ml suspensions are approximately 7 pixels in 

diameter. Using this dimension and the pixel dimensions (1.7 x 10-4 mm) to “measure” 

these structures yields a fiber diameter of 1.1 x 10-3 mm or about 1 m. SEM analysis of 

this type of scaffold reports an average fiber diameter of 0.29 ± 0.1 m. This discrepancy 

can be attributed to the observation that fibers in a dry electrospun scaffold can act like a 

diffraction gradient; an effect that explains why many electrospun materials have a white 

appearance. The “fibers” present in a brightfield image of a scaffold prepared from a 

suspension concentration of 80 mg/ml actually represent birefringence of sub-resolution 

fibers. 

To characterize how imaging artifacts might affect our FFT analysis we imaged 

scaffolds by brightfield (widefield) and confocal microscopy. For a representative aligned 

scaffold (130 mg/ml @ 25 kV, 4000 RPM) the brightfield data images produced an FFT 

alignment value of 0.08 units (Figure 4.4 A). A confocal average-intensity Z stack 

projection of this same region gave an alignment value of 0.16 units and a maximum-
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intensity Z stack projection gave an alignment value of 0.12 units (Figure 4.4 A). The 

different FFT values reported by the average-intensity and maximum-intensity Z stack 

projections develops from the algorithms used to produce the images. An average 

projection removes noise by summing and averaging pixel values in a Z stack column, 

“smoothing” the data set. In a maximal projection, noise is retained because the 

maximum pixel value in a Z stack is used to produce the final image, regardless of its 

source (signal or noise). We conclude from these experiments that optical (as seen in 

light scatter in widefield images) and electronic detector noise can degrade the absolute 

alignment value assigned to a scaffold by FFT analysis. However, the information that is 

present in a brightfield image allows the FFT approach to discern relative differences in 

alignment across different samples. 

To characterize how image resolution and the number of fibers present in a data 

set impacts FFT analysis we captured a series of SEM images at different magnifications 

from a representative aligned scaffold (130 mg/ml @ 25 kV, 4000 RPM). Analysis of 

these data sets indicates that FFT alignment values remain consistent over a wide range 

of image magnifications (Figure 4.4 B). We note the frequency plots of these data sets 

become increasingly noisy above 750X, an effect that we attribute to surface structures 

resolved on individual fibers. The confounding effects associated with this information 

are substantially eliminated when a threshold filter is applied to the image prior to FFT 

analysis (data not shown). 

Information concerning the angle at which electrospun fibers traverse any given 

optical image plane cannot be discerned from a brightfield, SEM or projected confocal 
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image (which is a 3-dimensional data set collapsed into a 2-dimensional projection). This 

information can be recovered by sequentially examining the image planes present within 

a 3-dimensional confocal data set. From this type of analysis we conclude that fibers in 

random (Figure 4.4 C and D) and aligned scaffolds (Figure 4.4 E and F) are not dispersed 

to any great extent in the Z direction. The fibers of these scaffolds are deposited into 

layers by the electrospinning process and are substantially restricted to discrete image 

planes. Z distribution and fiber alignment data also is encoded in the shape and relative 

frequency at which different cross-sectional profiles occur in a confocal data set. The 

fibers of a random scaffold exhibit a round or oval profile in both the YZ and XZ 

directions (Figure 4.4 D). In contrast, the fibers of an aligned matrix preferentially exhibit 

an elongated profile in the YZ plane (the principle axis of alignment present in this 

particular image) and a round or oval profile in the XZ plane (Figure 4.4 F). This 

information can theoretically be extracted from confocal images to provide a precise map 

of overall scaffold anisotropy in three dimensions.  
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Figure 4.4 A-F. FFT analysis of brightfield, confocal Z-stack average and confocal Z-
stack maximum projections of similar image fields (A). FFT analysis of SEM images 
as a function of SEM magnification (B). Cross sectional analysis of random (C and D) 
and aligned (E and F) electrospun scaffolds. Scale Bar D = 5 m, F = 10 m. 
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Materials Testing. To scale how FFT alignment values might correlate with 

scaffold anisotropy we conducted materials testing. Anisotropic materials can be 

expected to have stress and strain profiles that change as a function of the angle by which 

a test load is placed across the material. For an ideal and completely random matrix, 

stress (and strain) at failure in the parallel and the perpendicular orientations (with respect 

to the direction of mandrel rotation) should be identical. The ratio of the parallel to the 

perpendicular stress (or strain) will be equal to 1 for this type of scaffold.  

For scaffolds electrospun from a concentration of 80 mg/ml and collected at 200 

RPM, the ratio of average stress at failure in the parallel and perpendicular orientations 

was 0.86; the ratio of the average strain at failure under these conditions was 1.3 (Figure 

4.5 A and B). An analysis of absolute stress at failure for the parallel and perpendicular 

orientations for scaffolds collected at 2000, 4000, and 6000 RPM failed to detect any 

statistical differences in the data sets (Figure 4.5 C and D). This lack of directional bias is 

consistent with a structure composed of random elements. 

For scaffolds electrospun from 100 mg/ml suspensions the ratio of the average 

stress at failure in the parallel and perpendicular orientations increased modestly and 

sequentially as a function of mandrel RPM (Figure 4.5 A). At low RPM (200 and 2000) 

peak stress was higher in the perpendicular orientation (P<0.05).  As RPM increased, 

peak stress became increasingly biased in the parallel orientation (P<0.02) (Figure 4.5 A 

and C). The ratio of peak strains at failure in the parallel and perpendicular orientations 

decreased (Figure 4.5 B). However, statistical analysis of the absolute values for these 
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data sets failed to detect any directional bias in the strain properties of these scaffolds 

(Figure 4.5 B and D). 

Scaffolds electrospun from the 130 mg/ml suspensions exhibited evidence of 

anisotropy under all of the conditions that we tested (P<0.03, Figure 4.5 A and C), 

indicating that a degree of alignment is induced even at nominal mandrel RPM. There 

was a distinct change in the ratio of the peak stresses (Figure 4.5 A) and the ratio of the 

peak strains at failure (Figure 4.5 B) between 4000 and 6000 RPM. Scaffolds prepared 

from the 150 mg/ml suspensions exhibited poor structural integrity under the 

electrospinning conditions used in this study and were damaged during removal from the 

mandrel. As a result, the material properties of these scaffolds were not tested.  

In summary, the materials testing data suggests that an FFT alignment value of 

0.05 units or greater corresponds to the evolution of scaffold anisotropy. Scaffolds that 

exceed this alignment value exhibit an orientation bias in materials testing. In contrast, 

scaffolds with FFT values below this threshold appear to be random in nature. The use of 

a strain extensometer to determine the strain properties of a soft tissue is a less than ideal 

approach; the weight of the testing apparatus can distort the resulting strain values. Given 

the results of our study and the potential technical limitations in measuring strain we 

believe the measured stress properties of an electrospun scaffold more accurately reflect 

the anisotropic properties of these materials. In our experiments the stress measurements 

are less susceptible to instrument induced error. 
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Figure 4.5 A-F. Material properties as a function of mandrel rotation. Ratio (in the 
parallel to perpendicular orientations) of stress (A) and strain (B) at failure. Average 
stress (C) and strain (D) at failure in scaffolds deposited at 200 RPM. * = bias in the 
parallel orientation, P = bias in the perpendicular orientation (P<0.05).  Error bars = ± 
standard error. Table E=average stress values, F=average strain values as a function of 
starting concentration and direction of testing. 
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DISCUSSION 

 

Fiber Diameter and Pore Area. We have examined how starting conditions 

regulate fiber diameter, pore area and the material properties of electrospun gelatin. 

Scaffolds were prepared from starting concentrations of 80, 100, 130 and 150 mg 

gelatin/ml TFE; this represents the range of conditions that produced useful scaffolds. At 

starting concentrations of less than 80 mg/ml, scaffolds of gelatin are composed of 200 -

300 nm diameter fibers, exhibit poor structural integrity and are difficult to manually 

manipulate [15]. Conversely, scaffolds electrospun from stock concentrations containing 

150 mg/ml gelatin, or greater, retain solvent and are difficult to recover for analysis.  

In our experiments fiber diameter did not vary as a simple linear function of the 

starting concentration of gelatin (Figure 4.2 B). There are several potential explanations 

to account for this result. Theoretically, the viscosity of the starting solution/suspension is 

the variable most closely linked to fiber cross-sectional diameter in the electrospinning 

process [118][126-128]. However, viscosity evolves from properties that are intrinsic to a 

specific solvent system and the identity, concentration and extent of polymer chain 

entanglements (and the degree of solubility of a given polymer) present at the onset of 

electrospinning. Viscosity is further modulated by ambient conditions (temperature, 

humidity etc.). These fundamental variables are coupled with the rate of polymer delivery 

to the electric field, the ionic composition of the solution/suspension, and the 

electrospinning voltage to regulate the stability of the Taylor cone, the trajectory of the 

charged jet and the dimensions of the developing fiber. We suspect there is a mismatch 
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between one of these coupled electrospinning parameters; multiple charged jets have 

been observed to develop and episodically collapse when electrospinning from our 100 

mg/ml suspensions. Removing either the 100 or 130 mg/ml data sets dramatically 

improves our regression analysis results when we examine how fiber diameter varies as a 

function of starting concentration or viscosity. Removing the 100 mg/ml data provides a 

first-order R2 value of 0.68 and a second-order R2 value of 0.86; removing the 130 mg/ml 

data generates a first-order R2 value of 0.75. We believe that a re-assessment of data sets 

generated with other polymer systems may reveal similar discontinuities in the theoretical 

relationships that exist between fiber diameter and solution viscosity (a variable that has 

not been commonly reported) [106].  

 

Mandrel Rotation. For each starting concentration, fiber diameter remained 

constant over a wide range of mandrel RPM (Figure 4.2). If the mandrel acted like a 

spool, and scaffold alignment was induced by fiber winding, average fiber diameter 

would be expected to decrease as a function of mandrel RPM. This thinning effect has 

been observed in electrospinning systems where a rotating disk mandrel with a high 

surface velocity is used as a target [110].  

 

Fiber Alignment and Scaffold Anisotropy. As judged from this preliminary 

study, the FFT can be used to predict scaffold anisotropy over a wide range of imaging 

conditions. It is important to note, however, that because electrospinning produces sub-

micron fibers that are often below the resolution of a light microscope objective, images 
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of these fibers are generated through birefringence. Although our data suggests this type 

of image produces useful FFT data, the effects of image resolution on FFT output should 

be calibrated and verified by high-resolution analysis using confocal microscopy and/or 

SEM (see Figure 4.4). SEM images are clearly amenable to analysis by FFT, but this 

approach must assume a uniform distribution of fibers throughout the cross-sectional 

diameter of the scaffold. We are continuing to explore the limits of FFT analysis in the 

characterization of scaffold structure. 

Routine microscopic examination of our scaffolds identified evidence of 

preferential fiber alignment under a variety of different electrospinning conditions (e.g. 

Figure 4.3). FFT alignment values of greater than 0.05 units were correlated with the 

onset of directional bias in the material properties (Figure 4.5). Scaffolds that did not 

meet this criterion failed to exhibit overt visual evidence of anisotropy or the stress/strain 

values normally expected of a material composed of aligned elements. The correlation 

between the materials testing data and the degree of scaffold anisotropy, as determined by 

FFT, indicate that our optical measurements can be used to predict scaffold alignment on 

a relatively large scale (i.e. alignment is not just a local phenomena detected by FFT 

analysis).  

 

 

 

 

 

 120



www.manaraa.com

   

CONCLUSION 

 

Anisotropy in an electrospun scaffold develops from a complex set of variables. A 

surprising degree of anisotropy can be present in an electrospun scaffold composed of 

relatively large diameter fibers that have been collected at modest rates of mandrel 

rotation. These results clearly demonstrate that it is necessary to take into account the 

relative degree of fiber alignment present in an electrospun material when attempting to 

compare the material properties of constructs composed of different fiber diameters. Our 

data also underscore the central role that macroscopic architectural features can play in 

regulating the material properties of the native ECM. Additional experimentation will be 

necessary to determine if more subtle changes in FFT alignment values can be correlated 

with the evolution of specific material properties and/or features that can control cell 

phenotype in an electrospun tissue-engineering scaffold. By tailoring scaffold anisotropy 

in an electrospun material it may be possible to provide contact guidance cues to cells 

and more closely mimic the material properties of native structures [129][130]. FFT 

analysis is a potentially valuable method for quantifying alignment, confirming the 

reproducibility of nano-manufacturing processes and examining the biological 

consequences of scaffold structure. 
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CHAPTER 5 Modulation of Material Properties in Electrospun 

Scaffolds 

 
Preface: The following manuscript appeared in Acta Biomaterialia, 2007, volume 3, 

pages 651-661 [63]. The work included demonstrates how changes in fiber diameter, 

scaffold architecture and angle of testing modulate the material properties of an 

electrospun scaffold. The fast Fourier transform was used to measure the relative fiber 

alignment in the scaffolds. These experiments were conducted as an extension of the 

manuscript included in chapter 4 in order to better understand the role fiber alignment 

plays in establishing the material properties of an electrospun scaffold. These results are 

critical to the understanding of how structure and architecture contribute to the overall 

properties of a scaffold; understanding and characterizing these elements is crucial for 

the facilitation of native extracellular matrix recapitulation. 
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ABSTRACT 

 

Electrospinning can be used to selectively process a variety of natural and synthetic 

polymers into highly porous scaffolds composed of nano-to-micron diameter fibers. This 

process shows great potential as a gateway to the development of physiologically relevant 

tissue engineering scaffolds. In this study we examine how incremental changes in fiber 

alignment modulate the material properties of a model scaffold. We prepared electrospun 

scaffolds of gelatin composed of varying fiber diameters and degrees of anisotropy. The 

scaffolds were cut into a series of dumbbell shaped samples in the longitudinal, 

perpendicular and transverse orientations and the relative degree of fiber alignment, as 

measured by the fast Fourier transform (FFT) method, was determined for each sample.  

We measured peak stress, peak strain and the modulus of elasticity as function of fiber 

diameter and scaffold anisotropy.  Fiber alignment was the variable most closely 

associated with the regulation of peak stress, peak strain and modulus of elasticity. 

Incremental changes, as judged by the FFT method, in the proportion of fibers that were 

aligned along a specific axis induced incremental changes in peak stress in the model 

scaffolds. These results underscore the critical role that scaffold anisotropy plays in 

establishing the material properties of an electrospun tissue engineering scaffold and the 

native extracellular matrix. 

 

 

 

 124



www.manaraa.com

   

INTRODUCTION 

 

The electrospinning process shows great potential as a gateway for the 

development and fabrication of physiologically relevant tissue engineering scaffolds 

[15][66][131]. A variety of native proteins [13][61][62], synthetic polymers 

[105][106][110] and blends of native and synthetic materials [43] can be selectively 

processed and electrospun into highly porous scaffolds composed of small diameter 

fibers. The physical, biochemical, biological and material properties of this unique class 

of materials can be regulated at several sites in the production process. Physical 

properties, including fiber diameter and pore dimension, can be regulated by controlling 

the composition of the electrospinning solvent and the identity, concentration, and/or 

degree of chain entanglements (viscosity) present in the starting polymer(s) [117][118]. 

The structural profile of the selected materials can even be modulated after the 

completion of the electrospinning process through nanofiber self-assembly events [132]. 

The biochemical profile of scaffolds can be manipulated through the addition of soluble 

growth factors [130] and other pharmaceuticals [119][133] during and/or after the 

electrospinning process. Biological properties can be further tailored to specific 

applications by controlling fiber identity and alignment.  

Emerging evidence suggests that fiber alignment and overall scaffold anisotropy 

play a critical role in determining the material properties of electrospun materials 

[14][106][108]. However, efforts to examine how scaffold material properties develop as 

a function of these characteristics have been limited; developing an objective, 
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quantitative measure of fiber alignment is a challenging task. In previous studies we 

adapted and used the fast Fourier transform (FFT) to measure the relative degree of fiber 

alignment present in an electrospun scaffold [14][83]. We observed distinct material 

properties as scaffold anisotropy reached a critical threshold and here we extend our 

preliminary observations to more precisely define this threshold.  In this study we 

examine how fiber diameter and specific degrees of fiber alignment, as determined by the 

FFT method, interact with the testing angle to dictate the material properties of an 

electrospun scaffold.   

To explore how fiber alignment regulates material properties, calfskin gelatin 

scaffolds of varying fiber diameters are electrospun onto a rectangular, grounded 

mandrel. Differing degrees of fiber alignment can be induced by rotating the mandrel at a 

constant rate between 0 and 6000 RPM [119].  Scaffolds are cut into dumbbell shaped 

samples (for materials testing purposes) in the longitudinal, perpendicular or transverse 

orientations. From these samples the relative degree of fiber alignment, as measured by 

the FFT method, is determined. The samples are then tested to failure using a materials 

testing machine.  From the data it appears that fiber alignment is the variable most closely 

associated with changes in scaffold material properties, increasing the proportion of 

fibers aligned along a specific axis induces incremental changes in peak stress. These 

results emphasize the central role that scaffold anisotropy plays in determining the 

material properties of the native extracellular matrix and engineered scaffolds. 
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MATERIALS AND METHODS 

 

Electrospinning. Reagents were purchased from Sigma Aldrich (St. Louis, MO) 

unless noted. Gelatin was suspended (120, 150 and 180 mg/ml) and agitated in 2,2,2 

trifluoroethanol (TFE) for 24 hr.  Electrospinning suspensions were loaded into a 20 ml 

Becton Dickinson syringe capped with an 18 gauge blunt tipped needle. The air gap 

distance between the source suspension and the grounded mandrel was set to 20 cm. A 

Harvard perfusion pump was used to meter the delivery of the electrospinning 

suspensions to the electric field. The positive output lead of a high voltage supply 

(Spellman CZE1000R; Spellman High Voltage Electronics Corporation) was attached by 

an alligator clip to the blunt tipped needle. For a detailed schematic of the electrospinning 

system, see reference 13. Electrospinning was conducted at an accelerating voltage of 25 

kV. The rate of solvent/polymer delivery was set at the maximal rate that did not induce 

dripping from the tip of the syringe. A stainless steel rectangular mandrel (75 x 20 x 6 

mm) was used as a grounded target.  

The target mandrel was regulated to rotate between 0 to 6000 RPM to induce 

varying degrees of alignment in the electrospun scaffolds. A digital stroboscope (Shimpo 

Instruments DT3-11A) was used to continuously monitor the RPM of the target mandrel. 

Under the conditions of this study, fiber diameter remained constant over the range of 

mandrel RPM used to collect the scaffolds (not shown, see reference 14). Samples were 

stored in a desiccation chamber to limit hydration prior to analysis. 
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Scanning Electron Microscopy. Average fiber diameter was determined from 

samples processed for conventional Scanning Electron Microscopy (SEM, Jeol JSM-

820).  Dry, unfixed electrospun scaffolds were sputter coated with gold for imaging. SEM 

images were captured on Polaroid film, digitized via a flatbed scanner and analyzed with 

NIH ImageTool (UTHSCSA version 3). Average fiber diameter was determined from 

measurements taken perpendicular to the long axis of the fibers within representative 

microscopic fields (25 measurements per field). All measurements were calibrated from 

size bars incorporated into the SEM images at the time of capture (N=3 from independent 

experiments).  

 

Light Microscopy. The scaffolds were imaged using a Nikon TE300 microscope 

equipped with a Nikon DXM 1200 digital camera. Bright Field images (3840 x 3072 

pixels) were captured with a 20X 0.40 n.a. brightfield objective lens. All images were 

archived as .TIF files. 

 

FFT. As described in detail in a previous study, the FFT was used to evaluate 

relative fiber alignment in electrospun scaffolds [14]. For a complete description of this 

method see reference 83. The FFT function converts information present in an optical 

data image from a “real” domain into a mathematically defined “frequency” domain. The 

resulting FFT output image contains grayscale pixels that are distributed in a pattern that 

reflects the degree of fiber alignment present in the original data image. A graphical 

depiction of the FFT frequency distribution is generated by placing an oval projection on 
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the FFT output image and conducting a radial summation of the pixel intensities for each 

angle between 0 and 360°, in one degree increments. The pixel intensities are summed 

along each radius and then plotted as a function of the angle of acquisition (position of 

the radial projection on the oval profile), usually between 0 and 180° (FFT data is 

symmetric so a pixel summation to 360° is unnecessary). The degree of alignment present 

in the original data image is reflected by the height and overall shape of the peak present 

in this plot. The position of the peak on the plot reports the principal axis of alignment. 

For analysis, grayscale, 8-bit .TIF brightfield microscopic images were cropped to 

2048 x 2048 pixels. FFT analysis was conducted using ImageJ software (NIH, 

http://rsb.info.nih.gov/ij) supported by an oval profile plug-in (authored by William 

O’Connnell). The FFT data was normalized to a baseline value of 0 and plotted in 

arbitrary units ranging from 0 to 0.1.  

 

Materials Testing. After FFT analysis, samples were subjected to materials 

testing using a Bionix 200 Mechanical Testing Systems instrument equipped with a 50 N 

load cell (MTS Systems Corp, Eden Prairie, MN). Scaffolds were removed from the 

target mandrel and laid flat to maximize surface area for sample cutting. Samples were 

cut into a series of dumbbell shaped samples (2.67 mm wide with a gauge length of 7.49 

mm). Samples were cut in three orientations: longitudinal (the length of the sample cut 

parallel to the direction of mandrel rotation), perpendicular (the length of the sample cut 

perpendicular to the direction of mandrel rotation) and transverse (the length of the 

sample cut at a 450 angle to the direction of mandrel rotation). Each scaffold was large 
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enough to produce a minimum of 4 samples in each of the three orientations. Each 

specimen was assigned a unique serial number to allow for tracking. Specimen thickness 

was determined with a Mitutoyo IP54 digital micrometer (Mitutoyo American Corp; 

Aurora, IL). Scaffolds were tested to failure using an extension rate of 10 mm/min to 

evaluate the stress, strain and modulus of elasticity as a function of electrospinning 

condition (e.g. starting concentration), average fiber diameter and relative fiber alignment 

(as reported by FFT analysis).  

 

Statistical Evaluation. One-way ANOVA was used to screen the morphometric 

fiber diameter data sets. A Tukey test was used in the post hoc analysis of these data sets. 

Two-way ANOVA was used to screen for the effects of fiber diameter, testing angle (i.e. 

longitudinal, perpendicular and transverse) and interactions between these variables.  

Two-way ANOVA was also used to screen for the effects of fiber orientation, testing 

angle and interactions between these variables.  For this analysis (see Figures 5.6 and 5.7) 

data was sorted by the angle of testing (i.e. longitudinal, perpendicular and transverse) 

and then by the FFT alignment value. The alignment values for each individual scaffold 

were rounded down and the data sets were binned in 0.01 FFT units (Figure 5.5 A-C).  

The binned data sets were then analyzed to examine how the degree of alignment and 

angle of testing impact scaffold material properties. A Tukey Test was also used in the 

post hoc analysis of these data sets. For all pairwise comparisons, significance was 

defined at P<0.05. Actual P values are presented in Table 5.2, Tables I-III. Total N=12-

18 samples for each fiber diameter and orientation.  
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RESULTS 

 

Fiber Characterization. Screening the morphometric data sets indicated that 

three distinct classes of fibers were generated from the different starting concentrations of 

gelatin (P<0.001). Representative SEM images are illustrated in Figure 5.1. The average 

cross-sectional fiber diameter of each scaffold increased two-fold with every 30 mg/ml 

increase in starting concentration. Starting concentrations of 120, 150 and 180 mg/ml 

produced average cross-sectional fiber diameters of 1.59, 3.46 and 6.93 m, respectively. 

The interrelatedness of starting concentration, suspension viscosity and average fiber 

diameter in our electrospinning system is documented in Figure 5.1 D-F. Fiber diameter 

remained constant over all mandrel RPM used in this study.  
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Figure 5.1 A-F. Scanning electron micrographs of scaffolds produced from starting 
concentrations of 120 (A), 150 (B) and 180 mg/ml (C).  Interactions between fiber 
diameter, concentration and viscosity: fiber diameter as a function of concentration 
(D), fiber diameter as a function of viscosity (E) and viscosity as a function of 
concentration (F). 
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Material Properties: Longitudinal Orientation.  The material properties of the 

electrospun scaffolds are summarized in Figures 5.2-5.5. The samples were sorted and 

plotted solely by the angle at which the scaffolds were tested (i.e. longitudinal, 

perpendicular or transverse). The data sets include material properties of scaffolds 

composed of all fiber diameters as a function of the FFT alignment value.  

Samples cut and tested in the longitudinal orientation exhibited increased levels of 

peak stress as a function of increasing FFT alignment value (Figure 5.2 A). In addition, a 

distinct change in material properties occurred at an FFT alignment value of 

approximately 0.05 units. Specific peak stress values for different conditions are 

summarized in Table 5.1, Table I.  Peak strain was highly variable over the FFT values 

that we examined and no relationship was evident between the peak strain and the FFT 

alignment value (Figure 5.2 B & Table 5.1, Table II). Analogous to the peak stress for 

this test group, the modulus of elasticity increased as a function of the FFT alignment 

value (Figure 5.2 C, Table 5.1 Table III).  

 

Material Properties: Perpendicular Orientation.  Samples cut and tested in the 

perpendicular orientation exhibited lower and more uniform peak stress values than 

scaffolds tested in the longitudinal orientation (compare Figures 5.2 A with Figure 5.3 A, 

Table 5.1 Table I).  Peak strain values were similar to those reported for the longitudinal 

test group (compare Figures 5.2 B and 5.3 B, Table 5.1 Table II). The modulus of 

elasticity exhibited a modest decrease as a function of increasing FFT alignment value 

(Figure 5.3 C, Table 5.1 Table III).  
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Material Properties: Transverse Orientation.  Samples cut and tested in the 

transverse orientation exhibited material properties that were similar to the material 

properties of the perpendicular samples (compare Figures 5.3 and 5.4).  Peak stress 

values were comparable for all samples tested across all FFT alignment values (Figure 

5.4 A, Table 5.1, Table III). Peak strain values (Figure 5.4 B) and the modulus of 

elasticity (Figure 5.4 C) were similar to those of samples tested in the perpendicular 

orientation (Table 5.1 Table III).  
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Figure 5.2 A-C. Summary of the peak stress (A), peak strain (B) and modulus of 
elasticity (C) as a function of the absolute FFT alignment value for each electrospun 
scaffold tested in the longitudinal orientation.  Linear regression analysis for the FFT 
alignment value and the peak stress (R2=0.760), peak strain (R2=0.194) and modulus 
of elasticity (R2=0.233). Subdividing and analyzing the data by average fiber diameter 
did not alter the results (not shown).  
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Figure 5.3 A-C. Summary of the peak stress (A), peak strain (B) and modulus of 
elasticity (C) as a function of the absolute FFT alignment value for each electrospun 
scaffold tested in the perpendicular orientation. Linear regression analysis for the FFT 
alignment value and the peak stress (R2=0.048), peak strain (R2=0.288) and modulus 
of elasticity (R2=0.185). Subdividing and analyzing the data by average fiber diameter 
did not alter the results (not shown).
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Figure 5.4 A-C. Summary of the peak stress (A), peak strain (B) and modulus of 
elasticity (C) as a function of the absolute FFT alignment value for each electrospun 
scaffold tested in the transverse orientation. Linear regression analysis for the FFT 
alignment value and the peak stress (R2=0.080), peak strain (R2=0. 198) and modulus 
of elasticity (R2=0.149).  Subdividing and analyzing the data by average fiber diameter 
did not alter the results (not shown). 
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Table 5.1. Summary of materials testing data presented in Figures 2, 3 and 4. 
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Intermediate Summary. Initial examination of these data sets suggested that the 

calculated material properties of an electrospun scaffold may be governed by a complex 

interaction between fiber size (cross sectional diameter), degree of alignment present 

(FFT alignment value) and angle of testing (longitudinal, perpendicular or transverse).  

Next, we systematically examined how each of these variables modulated the peak stress 

of an electrospun scaffold. We elected to concentrate on peak stress because it is most 

closely associated with the evolution of anisotropy in an electrospun scaffold [14].  

 

Effects of Fiber Diameter and Testing Angle. Analysis of fiber diameter and 

angle of testing indicated that peak stress increased as a function of fiber diameter (Figure 

5.5 A, P<0.006) and varied as a function of testing angle (Figure 5.5 B, P<0.039). Peak 

stress was highest in scaffolds tested in the longitudinal orientation, intermediate in 

scaffolds tested in the transverse orientation and lowest in scaffolds tested in the 

perpendicular orientation.  

Under specific conditions, the 2-way ANOVA detected interactions between fiber 

diameter and angle of testing (P<0.001). There was no directional bias in scaffolds 

prepared from the 120 mg/ml starting concentrations (average fiber diameter = 1.59 m). 

This result is consistent with scaffolds composed of randomly oriented fibers; peak stress 

(and strain) should be uniform in each direction. Scaffolds prepared from the 150 mg/ml 

starting concentrations (average fiber diameter = 3.46 m) exhibited three distinct 

patterns of stress as a function of the testing angle (Figure 5.5 C, P<0.002).  The scaffolds 

prepared from the 180 mg/ml concentrations (average fiber diameter = 6.93 m) 
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exhibited higher peak stresses in the longitudinal orientation than in the transverse and 

perpendicular orientations (Figure 5.5 C, P<0.001). Samples from this suspension tested 

in the perpendicular and transverse orientations could not be distinguished from one 

another.  
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Figure 5.5 A-C. Contributions of fiber diameter (A), testing angle (B) and interactions 
between these variables in the determination of peak stress (C). Scaffolds composed of 
different fiber diameters (A, P<0.006) and examined at different testing angles (B, 
P<0.039) had unique peak stress properties. Specific interactions existed between 
these variables in scaffolds composed of 2.27 m and 4.68 m diameter fibers (C). All 
data ± S.E. 
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Effects of Fiber Alignment and Testing Angle. Analysis of fiber alignment and 

angle of testing indicated that peak stress was greater in the longitudinal orientation with 

respect to the perpendicular and transverse orientations (P<0.001), which were 

indistinguishable from each other (Figure 5.6 A-C). An interaction between the binned 

FFT alignment value and the angle of testing was also detected (P<0.001). These 

interactions were primarily evident in the longitudinal test samples.  

Samples exhibiting FFT alignment values of less than 0.05 units did not exhibit 

evidence of directional bias in materials testing. The peak stress of the scaffolds at each 

angle of testing and binned between 0.02 and 0.04 units was identical (Figure 5.6 A & 

Table 5.2, Table I). These results are consistent with a material composed of random 

elements. Statistical analysis suggests that anisotropic material properties begin to 

develop in the longitudinal test group at a binned FFT alignment value of 0.05 units. This 

value also marks the threshold where the peak stress of the longitudinal test group 

diverges and can be distinguished from the peak stress present in the perpendicular and 

transverse test groups (P<0.05). Beyond this threshold, detectable changes in peak stress 

developed as a function of 1-2 bins in the longitudinal test group (Table 5.2. Table I).  

Peak strain values as a function of the binned FFT alignment value are 

summarized in Figure 5.6 B and Table 5.2, Table II. Examining the effects of angle of 

testing in terms of the binned FFT alignment value indicated that peak strain was 

different across each of the three test groups (longitudinal vs. perpendicular vs. 

transverse; P<0.001). An interaction between the FFT alignment value and the angle of 

testing was also present in this analysis (P<0.001). In addition, there were specific 
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interactions within each of the test groups as a function of FFT alignment value (Table 

5.2, Table II). However, differences across the FFT alignment values for peak strain were 

less consistent than for the peak stress values for the same test groups.  

The modulus of elasticity values as a function of the binned FFT alignment value 

are summarized in Figure 5.6 C and Table 5.2, Table III. Examining the effects of angle 

of testing in terms of the binned FFT alignment value indicated that the modulus of 

elasticity in the longitudinal orientation was different from the perpendicular and 

transverse orientations (P<0.001), which were statistically indistinguishable from each 

other. Evidence of the transition from a random to anisotropic material occurred between 

a binned FFT alignment value of 0.05 and 0.06 units. As with peak strain, the modulus of 

elasticity of the longitudinal test samples diverged from the perpendicular and transverse 

test samples at a binned FFT value of 0.05 units (P<0.05). Interactions between the 

binned FFT alignment value and orientation of testing were also present (P<0.001). 

Changes in the modulus of elasticity for longitudinal test samples were detectable over 4-

5 bins (Table 5.2, Table III). Limited interactions between the FFT value and testing 

angle were detected in the perpendicular test groups and none were evident in the 

transverse test groups (Table 5.2, Table III). 
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Figure 5.6 A-C. Impact of testing angle on the peak stress (A), peak strain (B) and 
modulus of elasticity (C) as a function of FFT alignment value. From the peak stress 
data we conclude: 1) onset of anisotropy begins at FFT values greater than 0.05 units, 
2) scaffolds tested in the transverse orientation are isotropic with scaffolds tested in 
the perpendicular orientation and 3) peak stress of longitudinal samples changes
incrementally in 1-2 FFT alignment units. Asterisks in A and B indicate the onset of 
anisotropic properties within the longitudinal samples and the divergence of these 
samples from the perpendicular and longitudinal test groups. See Figure 6 for a 
complete breakdown of the statistical analysis. All data ± S.E. 
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Table 5.2. Summary of statistical analysis for data presented in Figure 5: peak stress 
(Table I), peak strain (Table II) and modulus of elasticity (Table III). Asterisk in Table 
I denotes the putative threshold where scaffold anisotropy begins to impact material 
properties. 
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DISCUSSION 

 

In this study we examined how fiber diameter, scaffold architecture and angle of 

testing interact to modulate the material properties of an electrospun scaffold. The results 

of these experiments provide support for two distinct conclusions. First, within limits, 

fiber diameter does not appear to play a direct role in governing the material properties of 

an electrospun scaffold. Second, optical FFT alignment values of greater than 0.05 units 

must be achieved before any evidence of directional bias in materials testing can be 

detected. Once this FFT alignment threshold was been surpassed, incremental changes in 

scaffold anisotropy resulted in incremental changes in peak stress as a function of 1-2 

FFT alignment bins when scaffolds are tested in the longitudinal orientation. 

 Average fiber diameter and the degree to which a population of fibers are aligned 

along a given axis represent properties that are intrinsic to the three dimensional 

architecture and structure of an electrospun scaffold. The angle at which a test load is 

applied across a scaffold is independent of, and extrinsic to, the structural characteristics 

of that particular sample. The material properties of an idealized scaffold composed of 

random elements can be expected to be identical regardless of the angle of testing 

(orientation of the test load with respect to mandrel rotation). Under these circumstances, 

the material properties should vary as a function of polymer identity and potentially the 

diameter, density, and tortuosity of the fibers in the scaffold, as well as the degree to 

which the constituent fibers are entangled (and/or solvent welded) with one another. The 

calculated material properties of a scaffold should only vary as a function of the angle of 
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testing if a substantial percentage of the fibers are aligned along a unique axis [108]. A 

consideration of scaffold anisotropy represents a critical design feature in the fabrication 

of blood vessels, ligaments and other tissues that may be subject to uniaxial mechanical 

loads. 

On first pass, statistical evaluation of our data sets indicated that fiber diameter 

represents an underlying variable that defines scaffold material properties (Figure 5.5 A). 

However, we argue that fiber diameter plays a relatively minor and indirect role in 

determining the material properties observed in our gelatin-based scaffolds. To support 

this conclusion we cite experiments in which we independently examined how the angle 

of testing (Figure 5.5 B: in the context of fiber diameter, ignoring the contributions of 

alignment) and fiber alignment (Figure 7: in the context of the testing angle, ignoring the 

contributions of fiber diameter) regulate scaffold material properties. Data presented in 

Figure 5.5 B indicate that peak stress varies as a function of the testing angle. This effect 

was only present in a specific subset of the data. Evidence of directional bias was absent 

in scaffolds prepared from the 120 mg/ml starting concentrations under all conditions and 

was present in scaffolds prepared from the 150 and 180 mg/ml starting concentrations 

under selected conditions (Figure 5.5 C). 

Experiments presented in Figure 5.6 A provide an explanation for the previously 

stated results. In these experiments the peak stress in scaffolds with FFT alignment values 

of less than 0.05 units, regardless of fiber diameter, did not exhibit any evidence of 

directional bias in materials testing. This data range includes samples prepared from each 

of the starting concentrations and contains scaffolds composed of all fiber diameters. 
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Peak stress at failure was similar in each of the three orientations (longitudinal, 

perpendicular and transverse) tested in this subset of samples. Since these scaffolds 

exhibit no evidence of directional bias in materials testing they are, by definition, 

composed of random elements. This result makes it possible to discount the potential 

contributions of scaffold architecture (e.g. preferential fiber alignment) and provides 

direct evidence that fiber diameter does not play a crucial role in determining peak stress. 

Scaffolds produced from the 120 mg/ml solutions are composed of fibers less than 

2.0 m in diameter. Consistent with our previous work [133], we were unable to produce 

any scaffolds from this treatment group with a FFT alignment value of greater than 0.05 

units (Figures 5.2-5.4). The charged electrospinning jet produced by a low viscosity 

starting solution (e.g. 120 mg/ml) has a highly erratic path within the air gap, leading to 

the deposition of fibers along many different orientations when they collide with the 

target mandrel [117][118]. Thus, it is very difficult to induce alignment in a scaffold 

composed of small diameter fibers. Extremely high rates of mandrel rotation [110], more 

sophisticated collecting mandrels and/or the use of AC electrospinning potentials [109] 

must be used to induce anisotropy in this type of scaffold. 

Directional bias in materials testing was evident in scaffolds that had FFT 

alignment values of 0.05 units and greater. On our arbitrary FFT alignment scale, this 

value appears to represent a threshold where a sufficient fraction of fibers have become 

aligned along a common axis to induce directional bias in materials testing. Once this 

threshold was reached, peak stress underwent incremental increases as function of 1-2 

FFT alignment bins in the longitudinal test groups (again regardless of fiber diameter). 
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The data sets that exceed the 0.05 FFT alignment value are populated with scaffolds 

derived from the 150 and 180 mg/ml starting solutions (scaffold composed of fibers >3.0 

m in diameter). In conventional electrospinning systems fiber diameter is primarily 

determined by polymer concentration, the viscosity of the starting solutions and the 

degree of chain entanglements that are present at the onset of processing. Within limits, 

manipulating these parameters to increase the mass of the charged electrospinning jet 

induces the formation of progressively larger diameter fibers (Figure 5.1). In addition, 

increasing the mass of the charged jet increases its inertia, a condition that tends to 

dampen the amplitude of the whipping motions typically observed during fiber formation 

in the electrospinning air gap. This dampening effect makes it possible to induce fiber 

alignment at progressively lower mandrel RPM as a function of increasing fiber diameter 

[14]. We contend that the statistical treatment of the data presented in Figure 5.5 A 

indirectly documents the evolution of fiber alignment in selected data sets.  We conclude 

from these results that it is the evolution of fiber alignment as a consequence of the 

fundamental characteristics of the electrospinning process, not fiber diameter, which 

plays a central role in modulating the material properties of our model scaffolds.  
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CONCLUSION 

 

We were able to detect incremental changes in peak stress as a function of 1-2 

FFT alignment bins (Figure 5.6 A), suggesting that data generated from this sampling 

technique can represent a sensitive measure of fiber alignment. Incremental changes in 

the FFT alignment value were correlated with incremental changes in peak stress at 

failure. From our results, it is evident that scaffold anisotropy plays a central role in 

determining the material properties of a fibrous matrix. However, a determination of how 

mechanical loads are distributed across the individual fibers of an electrospun matrix has 

yet to be developed. Conventional materials testing cannot be used establish the extent to 

which the populations of fibers undergo re-arrangement in response to an applied load.  

At present we are examining this issue by using real time changes in 2D FFT alignment 

values in scaffolds subjected to different loading conditions [83]. 
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CHAPTER 6 Investigation of Dermal Fibroblast Adhesion 
 
 
Preface: The following manuscript was in the process of being submitted for review at 

Biomaterials at the time this document was prepared. As a result this chapter may not 

fully reflect the content of the final published manuscript. The included work investigates 

differences in cellular processes (adhesion, proliferation and migration) of human 

dermal fibroblasts in response to denatured collagen-based scaffolds. Additionally, the 

unmasking and availability of possible RGD binding sites through collagen denaturation 

is explored. The exposure of normally hidden sites (cryptic sites)  binding sites following 

tissue injury (or protein denaturation) can act as a signaling cue for cells, indicating that 

the presence of degraded proteins in a tissue-engineering scaffold may be advantageous. 
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ABSTRACT 

 

In this study, we developed a series of novel assays for the systematic evaluation of 

protein structure in an effort to examine how the chemical and physical composition of 

the local microenvironment and the unmasking of possible RGD sensitive binding sites 

through collagen denaturation, independent of scaffold architecture and porosity, impacts 

cellular processes. We cultured human dermal fibroblasts on electrospun nylon coated 

with a variety of non-denatured and thermally denatured collagen-based proteins, as well 

as recovered electrospun collagen and gelatin (in an effort to examine if the 

electrospinning process degrades the collagen α chain). Differences in adhesion, 

proliferation and migration between collagen-based proteins were exhibited. Adhesion 

inhibition assays using a cyclic RGD peptide demonstrated no change in cell adhesion on 

non-denatured proteins and a significant drop in cell adhesion on thermally denatured 

proteins. Based on gel analysis and the results of our functional assays we conclude that 

collagen  chain structure is not directly altered by the electrospinning process. Overall, 

the exposure or unmasking of RGD binding sites through the denaturation of collagen 

proteins represents an important insight into the wound healing paradigm; if tissue injury 

causes collagen protein degradation, exposure of RGD binding sites to a cell may 

represent a signaling cue that is necessary for wound resolution.  
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INTRODUCTION 

 

The extracellular matrix (ECM) functions to define the three-dimensional 

architecture of tissues and organs and is engaged in a complicated relationship with the 

cellular elements that populate the surrounding environment. Biochemical and 

mechanical events can induce changes in the local microenvironment that modulate the 

composition and architecture of the ECM. In turn, these changes in the ECM can regulate 

the phenotype and functional properties of the cellular compartment [44][134]. 

Communication between the cell and ECM molecules influences various cellular 

processes, such as adhesion, proliferation, differentiation, migration and apoptosis, as 

well as growth factor and cytokine modulation. 

Collagen, a protein native to the ECM, is a natural choice for use in tissue 

engineering scaffolds. This protein is abundant in mammals and acts as the major 

structural protein in skin, bones and tendons [67][135]. It has long been used as a 

biomaterial and in many applications it has proven to be highly biocompatible and readily 

resorbable [42][136]. Unfortunately, native collagen molecules can undergo changes in 

response to the conditions used to isolate and or prepare this natural biomaterial for use in 

a tissue engineering applications. For example, thermal denaturation of collagen breaks 

the triple helix of the protein into random coils [15]. This change in structure can have 

profound structural and functional consequences. The loss of the collagen triple helix 

greatly reduces the mechanical properties of this protein species. Denaturated collagen, 

(gelatin) can directly modulate the phenotypic profile of the resident cells present in the 
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interstitium, fibroblasts exhibit up-regulated synthesis and degradation of matrix 

constituents when exposed to this material [17][67][136].  

During the many stages of wound repair, cells must adhere to matrix molecules 

and undergo various levels of migration, proliferation and differentiation [137]. These 

processes are modulated by a variety of cell surface receptors and specifically by binding 

events mediated by integrins. Many integrins bind to ECM molecules through a tripeptide 

sequence, Arg-Gly-Asp (RGD) [138]. Previous research has suggested that the 

denaturation of collagen proteins exposes previously masked RGD binding sites, thus 

altering the normal profile of adhesion sites available for binding [138]. Arguably, the 

cells present within a wound bed have been primed to respond to the profile of matrix 

components present in that environment. Many tissue engineering scaffolds used in 

wound healing applications use matrix constituents designed to mimic the native, un-

injured extracellular matrix constituents. If tissue injury (or protein denaturation) 

divulges these binding sites and acts to signal cells to remodel a matrix, the presence of 

degraded proteins in a tissue engineering scaffold may be advantageous.  

Electrospinning has been used to fabricate a variety of native polymers 

[13][61][62], synthetic polymers [65][110] and blends of native and synthetic polymers 

[43][66] into highly porous tissue engineering scaffolds composed of nano-to-micron 

scale diameter fibers [117], a size that approaches the fiber diameters observed in the 

native extracellular matrix [41]. Electrospinning appears to impart unique, and somewhat 

controversial, properties to the collagen molecule. From a structural standpoint, we have 

reported that fibers of electrospun collagen resemble the tertiary structure of the native 
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fibril and exhibit the 67 nm banding pattern typical of this natural biopolymer [13][15]. 

However, it is clear that processing conditions, and undoubtedly other variables, can 

greatly alter the physical and material properties of this class of materials [89]. In part 

this may contribute to the variability of electrospun collagen; the 67 nm banding pattern 

is not always uniformly present in scaffolds that are nominally identified as a collagen-

based material [97].  

To date there has not been a systematic investigation designed to characterize how 

the procedures used to isolate and purify collagen might impact its functional profile at a 

molecular level. In this study we describe a battery of assays examining how various 

degrees of thermal denaturation impact collagen function in adhesion, migration and 

proliferation. We then use the results of these experiments as a barometer to investigate 

how the electrospinning process might alter collagen function. To separate the fiber 

forming properties of different protein fractions from the underlying functional 

consequences of different processing variables we have coated the fibers of electrospun 

nylon scaffolds with these different protein fractions. These electrospun nylon scaffolds 

are composed of 1-1.5 m diameter fibers that have a high surface area and protein 

binding capacity. By using these charged nylon fibers as a scaffold backbone we can 

present cells with a microenvironment that has consistent pore dimensions, fiber sizes 

and material properties.  In this study, we cultured human dermal fibroblasts on 

electrospun nylon coated with a variety of non-denatured and thermally denatured 

collagen-based proteins in an effort to examine how the chemical composition of the 

local microenvironment and the unmasking of possible RGD binding sites through 
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collagen denaturation, independent of scaffold architecture and porosity, impacts cellular 

processes. 
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MATERIALS AND METHODS 

 

Collagen Preparation. Calfskin corium (Lampire Biologics, Pipersville, PA) was 

cut into 1 mm² blocks, stirred for 24 hr in acetic acid (0.5M) and blended. All subsequent 

collagen processing was conducted at 40C. The extracted calfskin was filtered through 

cheesecloth and centrifuged at 10,000G for 12 hr. The supernatant was recovered and 

dialyzed against ice-cold, ultra pure 18 MΩ-cm water. Final collagen isolates were frozen 

and lyophilized. Representative collagen fractions used in thermal denaturation 

experiments were set aside prior to lyopholization and stored at 40C until needed.  

Soluble collagen fractions were left unheated (C) or thermally denatured at 50 

(C50), 60 (C60), 70 (C70) or 80°C (C80) for 1 hr. Other collagen-based materials used 

for experimentation were produced from commercially purchased gelatin (Sigma, 75 or 

225 bloom) and Vitrogen (Cohesion Technologies, Type I collagen) by diluting and 

dissolving these proteins into ice-cold 18 MΩ-cm water at a concentration of 1.5 mg/ml. 

 

Electrospinning. We used electrospun scaffolds of charged nylon (Ambion) as a 

solid phase support to characterize how different degrees of heat denaturation impacts 

collagen function. This approach makes it possible to dissociate the fiber forming 

properties of a particular protein fraction from the underlying functional consequences of 

different processing variables. All reagents were purchased from Sigma Aldrich (St. 

Louis, MO) unless noted.  
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Positively charged nylon membrane was suspended at 100 mg/ml in 1,1,1,3,3,3-

hexafluoro-2-propanol (HFIP) and solubilized under agitation for 12 hr. Solutions were 

loaded into a 10 ml syringe capped with a blunt end needle [60]. The syringe was then 

placed into a syringe pump and delivered to the electric field at a rate of 13 ml/hr. The 

positive output lead of a high voltage power supply (Spellman CZE1000R; Spellman 

High Voltage Electronics Corporation) was attached with an alligator clip to the blunt 

end needle and a charged to 23 kV. Scaffolds were electrospun onto a cylindrically 

shaped stainless steel grounded target (1 in diameter, 5.75 in long) placed 15 cm from the 

needle tip. The mandrel was set to rotate at approximately 500 RPM to produce scaffolds 

composed of random elements.  

Lyophilized collagen (55 mg/ml) and commercially purchased gelatin (Sigma, 

225 bloom, 110 mg/ml) were suspended in HFIP and solubilized for 12 hr on a clinical 

rotator [13][14][89]. These concentrations were used to produce collagen and gelatin 

based scaffolds composed of similar fiber diameters. Solutions were electrospun onto a 

stainless steel rectangular mandrel (70 mm x 10 mm x 5 mm) set to rotate at 500 RPM 

across a 25 cm air gap. Solutions were delivered at rate of 5 ml/hr to the electric field. 

Electrospun samples, designated “recovered” electrospun collagen (rEC) or “recovered” 

electrospun gelatin (rEG),  used in SDS gel analysis and cell adhesion, proliferation and 

migration experiments were produced by dissolving un-cross-linked electrospun scaffolds 

immediately after fabrication in ice-cold, 18 MΩ-cm water; final protein concentration 

1.5 mg/ml.  
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Gel Analysis. Samples of the collagen fractions used in our experiments were 

diluted 1:10 in Laemmli sample buffer, final protein concentration 0.15 mg/ml. Proteins 

were separated by interrupted SDS gel electrophoresis using a 10% polyacrylamide gel 

[143]. Samples were run until the dye front reached the bottom of the stacking gel, 1 ml 

of Laemmli buffer supplemented with 20% -mercaptoethanol was added to the gel and 

incubated for 30 min at room temperature. Samples were separated until the dye front 

reached within 1 cm of the bottom of the resolving gel. Gels were stained with 

Coomassie brilliant blue overnight, de-stained and photographed. Samples were analyzed 

by densitometry using NIH ImageJ software. 

 

Cell Culture. Adult human dermal fibroblasts (HDF) were purchased from 

Cascade Biologics (C-013-5C). All cells were passaged 3-5 times in basal dermal 

fibroblast medium 106 supplemented with a low serum growth kit (Cascade Biologics, S-

003-K). Proliferation and migration experiments were conducted in Medium 106 

supplemented with a low serum growth kit, with or without 5 ng/ml recombinant human 

PDGF-AA purchased from R&D Systems (221-AA). 

 

Adhesion Assays. Electrospun nylon scaffolds were cut into strips 1.75 in wide x 

3.25 in long and immersion activated in a 20% methanol/phosphate buffered saline (PBS) 

solution for 20 min. Scaffolds were rinsed 3x in PBS and placed into a dot blotter 

manifold (Topac Model DHM-48). Each well was supplemented with 50 µl of a collagen 

fraction and pulled through using a vacuum pump. Scaffolds coated with 1% bovine 
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serum albumin (BSA) were used as controls. All wells were then blocked with 100 µl of 

1% BSA solution for 5 min; the solution was then pulled through the membrane. The 

lower chamber of the dot blotter was filled with PBS until the solution just reached the 

inferior surface of the electrospun nylon scaffolds. Specific fractions assayed included: 

control (BSA), unheated calfskin type I collagen (C), collagen fractions subjected to 

different degrees of heat denaturation, 75 bloom commercial gelatin (G75), 225 bloom 

commercial gelatin (G225), recovered electrospun collagen (rEC), recovered electrospun 

gelatin (rEG), Vitrogen collagen (VC) and a mixture of unheated type I collagen and 

collagen thermally denatured at 50° (Mix C/50). Once the nylon scaffolds were coated 

the vacuum outflow of the dot blotter was sealed with parafilm. Sealing the dot blotter 

“pressurizes” it so that media added to the dot blot wells is retained and not wicked 

through the electrospun scaffolds coated with the different protein fractions. This 

technique made it possible to use the dot blotter itself as a tissue culture dish for the short 

term adhesion assays. In each adhesion assay approximately 3,000 HDFs were pipetted 

into each well (in 100 µl of supplemented medium). Following incubation for 1 hr at 

37°C, the dot blotter was inverted to remove any non-adherent cells and the scaffold was 

removed, rinsed in PBS and fixed in ice-cold methanol for 20 min.  

Cross-linked scaffolds were rinsed 5x in a 0.5% Triton solution prepared in PBS 

and incubated overnight at 4°C with a goat anti-rabbit GAPDH primary antibody (Sigma 

G9545, 1:5000) diluted in LiCor Odyssey Blocking Buffer. Scaffolds were then rinsed 1x 

in Odyssey Blocking Buffer 5x in a 0.1% tween-20 solution and incubated with goat anti-

rabbit IRDye 800 secondary antibody (LiCor 926-32211, 1:1000) prepared in Odyssey 
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Blocking Buffer for 1 hr at room temperature. Scaffolds were rinsed in Odyssey Blocking 

Buffer and 0.1% tween-20. Data images were captured at a line resolution of 84 m with 

a Li-Cor Odyssey Imager. The gain of the instrument was set to ensure the signal 

associated with GAPDH staining did not saturate the detector. See Figure 6.1 A for a 

representative Li-Cor Odyssey adhesion image. Total N=3-5 independent assays, 3 

replicates within each assay.   

To determine the experimental parameters for a cyclic RGD peptide cell adhesion 

inhibition assay, 48 well tissue culture plates were coated with 10 μg/ml Vitrogen type I 

collagen (VC), laminin (L) or fibronectin (F). Next, we incubated separate aliquots of 

HDF  (10,000 cells per treatment) for 15 min at 37°C with 0.01, 0.1 or 1 μg/ml cyclic 

RGD peptide (Bachem, H-2574) or 1 μg/ml control RGD peptide (Bachem, H-4088). The 

cells were then plated for 1 hr on the different ECM surfaces and the plates were inverted 

to remove any non-adherent cells and processed to image GAPDH as previously 

described. Electrospun scaffold adhesion experiments with the RGD peptide were 

conducted in the dot blotter and processed for imaging exactly as previously described. 

Suspended cells were incubated with 0.01, 0.1 or 1 μg/ml RGD peptide or 1 g/ml 

control peptide for 15 min at 37°C and plated for 1 hr as described in the adhesion assays. 

Total N=1 independent assay, 3 replicates within each assay.  

Adhesion assays were evaluated by densitometry using Odyssey software. A 

circular profile was placed over the domains used to plate the cells (green fluorescence in 

Figure 6.1 A). Results were collected as “Integrated Intensity” (signal-mm2) and 

expressed as a function of the BSA control. Data sets were screened by one-way 
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ANOVA (P<0.05) to test for differences between treatment groups. Dunn’s Method 

(P<0.05) and Mann-Whitney Rank Sum test (P<0.001) were used in post hoc analysis.  

 

Migration and Proliferation Assays. Electrospun nylon scaffolds were cut into 

12 mm diameter circular disks using a dermal biopsy punch. The disks were prepared for 

protein coating (in a sterile manner) as described, rinsed 3x in PBS and immersed 

overnight in 15 µg/ml protein/PBS solution using BSA, the collagen fractions C, C50 and 

C70, rEC, rEG, or VC type I collagen. Disks were cross-linked in 0.5% v/v 

glutaraldehyde prepared in ethanol for 1 hr, rinsed 3x in PBS and immersed in a 1% 

glycine/PBS solution overnight to block residual aldehyde groups. Disks were rinsed 3x 

in PBS and placed into 24 well tissue culture clusters. A sterile 6 mm diameter glass 

cloning ring (Corning) was placed on top of each disk. Each area encompassed by a 

cloning ring was plated with 4,000 HDFs in a total volume of 100 μl. The cells were left 

to settle for 20 min then 500 μl of media supplemented with or without PDGF was 

pipetted on the outside of the cloning rings. Plates were incubated at 37°C and re-fed 

media supplemented with or without PDGF at daily intervals. Cloning rings were 

removed after 24 hr of culture. Electrospun disks were recovered for analysis after 24 or 

96 hr of culture. Samples were rinsed in PBS, fixed in ice-cold methanol for 20 min and 

processed to image GAPDH as described in the adhesion assays.  

In these experiments, cell migration was defined as the change in surface area 

occupied by the cell population over the 24 to 96 interval of culture. These images were 

imported into the Odyssey Software and the total surface area occupied by the cell 
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population was measured (mm2).  In the Odyssey software area is reported as the number 

of pixels multiplied by the area per pixel, initial cell plating area = 20 mm2. Proliferation 

was defined as the increased fluorescence intensity of GAPDH present in the cultures per 

unit area of surface. Proliferation results were collected as “Integrated Intensity” (signal-

mm2) and expressed as a function of the BSA control. As with the adhesion experiments 

the gain of the LiCor instrument was set to ensure the signal associated with GAPDH 

staining did not saturate the detector. See Figure 6.1 B for a representative Li-Cor 

Odyssey adhesion image. Data sets were screened two-way ANOVA (P<0.05) to test for 

the impact of PDGF on cell migration and proliferation. Total N=2 independent assays, 

2-3 replicates within each assay.  
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Figure 6.1 A-B. Representative Li-Cor Odyssey images. Cell adhesion (A) was 
measured with the Odyssey software by placing a circular profile (slightly larger in 
diameter than the size of the dot blot well) over the cell adhered area (green 
fluorescence). Cell proliferation (B) was measured in the same manner as adhesion 
and cell migration (B) was measured as the difference between the total cell area after 
initial plating (in the Odyssey software area is reported as the number of pixels 
multiplied by the area per pixel, initial area = 20 mm2) and 96 hr (as judged by visual 
inspection). 
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Collagen Coating Characterization. To validate the protein immersion method 

for coating the scaffolds, electrospun nylon scaffolds were cut into 10 mm diameter 

disks, activated as described and coated with 15 µg protein/ml PBS solution using the 

collagen fractions C, C50, C60, C70, C80 or VC. Scaffolds were blocked with 1% BSA 

and left overnight at 4°C with a mouse anti-Collagen type I primary antibody (Sigma 

C2456, 1:500) prepared in Odyssey Blocking Buffer. Disks were rinsed as described and 

incubated with goat anti-mouse IRDye 680 secondary antibody (LiCor 926-32220, 

1:1000) prepared in Odyssey Blocking Buffer for 1 hr at room temperature and rinsed. 

Data images were captured with a Li-Cor Odyssey Imager set at a line resolution of 84 

m. Results were collected in “Integrated Intensity” (counts-mm2). This coating method 

appears to generate evenly and sufficiently coated scaffolds (Figure 6.2).   
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Figure 6.2. Collagen verification by Li-Cor Odyssey. Plot of integrated intensity 
values (top) verifies the presence of collagen on the nylon scaffolds and the 
similarities in terms of amount of collagen present. Li-Cor Odyssey image (bottom) of 
collagen coated scaffolds.  
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Scanning Electron Microscopy. Scaffolds were sputter coated and imaged with 

a Zeiss EVO 50 XVP scanning electron microscope equipped with digital image 

acquisition. Average fiber diameter and pore area data was determined from 

representative samples using NIH ImageTool (UTHSCSA version 3). All fiber diameter 

measurements were taken perpendicular to the long axis of electrospun fibers [14][63]. 

Measurements were calibrated from size bars incorporated into the SEM images at the 

time of capture. 

 

Materials Testing. Electrospun nylon scaffolds were cut into dumbbell shaped 

samples using a die punch (2.67 mm wide, gauge length of 0.295 mm). Representative 

samples were immersed in a 20% methanol/PBS solution for 20 min. The thickness of 

each dumbbell shaped sample (dry and hydrated) was determined with a Mitutoyo IP54 

digital micrometer (Mitutoyo American Corp; Aurora, IL). Dry and hydrated scaffolds 

were uniaxially tested to failure at an extension rate of 10 mm/min with a Bionix 200 

Mechanical Testing Systems instrument (MTS Systems Corp, Eden Prairie, MN). Data 

sets were screened by one-way ANOVA (P<0.001) to test for material property variations 

in dry and hydrated samples. A Tukey test was used for post hoc analysis (P<0.05). 

Statistical analysis indicates that the measured stress, strain and modulus profiles are all 

statistically different in dry versus hydrated scaffolds (Figure 6.3). 
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Figure 6.3 A-C. Material properties of dry or hydrated electrospun nylon scaffolds. 
Peak stress (A), strain (B) and modulus (C) were all statistically different in dry versus 
hydrated scaffolds (P<0.05). Dry nylon scaffolds reported stress, strain and modulus 
values of 3.06 ± 0.33 MPa, 89.03 ± 10.07 MPa, and 102 ± 0.8%, respectively. 
Hydrated scaffolds demonstrated stress, strain and modulus values of 1.62 ± 0.21 
MPa, 24.42 ± 4.62 MPa, and 30.0 ± 0.1%, respectively. Scanning electron microscope 
(SEM) image of a representative nylon scaffold (D) exhibiting an average fiber size of 
1.68 ± 0.54 um. 
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RESULTS 

 

Preparation and Characterization of Collagen Fractions. In preliminary 

experiments, Vitrogen type I collagen was heated at 50°C for 0, 0.25, 0.5, 1.0, 2.0, or 4.0 

hr. Densitometric analysis of the separated protein fractions revealed that nearly 50% of 

the collagen  chains were lost within 1 hr when exposed to 500C (Figure 6.4 A). 

Calfskin collagen was subjected to a similar analysis; we exposed representative samples 

of this material to 50, 60, 70, 80 or 90°C for 1 hr. These experiments demonstrate that 

increased temperatures rapidly accelerate the loss of the large molecular weight collagen 

 chains (Figure 6.4 B). Evidence of protein fragmentation was detectable at 50°C; at 

temperatures greater than 80°C the protein bands corresponding to the individual  

chains were completely lost from the samples (Figure 6.4 B, lanes 5-7).  

To examine how the electrospinning process (solvents and charging) alters  

chain content we next prepared electrospun scaffolds of type I collagen or 225 bloom 

commercially purchased gelatin and then directly recovered the samples for SDS analysis 

(scaffolds were directly re-dissolved for gel electrophoresis). Equal amounts of protein 

were separated and as judged by densitometric analysis the protein banding patterns and 

 chain content in the recovered electrospun samples of calfskin collagen were similar to 

the control starting material (Figure 6.5, lanes 2 and 3). Protein separation analysis of 

different permutations of commercially procured gelatin revealed these products, as 

expected, exhibited extensive  chain fragmentation. The banding pattern typical of 

intact collagen was absent in these samples (Figure 6.5, lanes 4-6). The gelatin samples 
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were comparable in terms of protein banding patterns and fragmentation to the calfskin 

collagen samples heated at 80 and 90°C for 1 hr (Figure 6.4 B, lanes 6 and 7).  
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Figure 6.4 A-B. Collagen analysis by reduced SDS gel electrophoresis. Vitrogen 
collagen (A) heated at 50°C for varying time points and analyzed by gel 
electrophoresis. Gel (left), Lane 1 = molecular weight standards, Lane 2 = unheated, 
Lane 3 = 0.25 hr, Lane 4 = 0.5 hr, Lane 5 = 1 hr, Lane 6 = 2 hr, Lane 7 = 4 hr. Plot 
(right) of each protein as a fraction of total area of α1(III) or α1(I) and α2(I) of 
Vitrogen collagen. Protein separation analysis indicates that collagen heated for longer 
time points exhibit increased protein fragmentation. Calfskin collagen (B) heated to 
varying temperatures and analyzed by gel electrophoresis. Gel (left) Lane 1 = 
molecular weight standards, Lane 2 = C, Lane 3 = C50, Lane 4 = C60, Lane 5 = C70, 
Lane 6 = C80, Lane 7 = C90. Plot (right) of each protein as a fraction of total area of 
α1(III) or α1(I) and α2(I). Protein separation analysis indicates that increasing 
temperatures drastically decreases the presence of large molecular weight monomers.  
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Figure 6.5. Collagen analysis by reduced SDS gel electrophoresis. Recovered 
electrospun collagen and commercial gelatin (B) analyzed by gel electrophoresis. Gel 
(left), Lane 1 = molecular weight standards, Lane 2 = C, Lane 3 = rEC, Lane 4 = rEG, 
Lane 5 = G75, Lane 6 = G225. Plot (right) of each protein as a fraction of total area of 
band 1 or bands 2 and 3. The electrospinning process does not appear to cause protein 
fragmentation; see C versus rEC and rEG versus G75 and G225. 
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HDF Adhesion. To explore how thermal denaturation of collagen  chains 

impacts function we next conducted adhesion assays with the different protein fractions. 

Overall, rates of cell adhesion were very similar in all of the thermally manipulated 

collagen fractions. Unheated calfskin collagen retained approximately 59% more cells 

when compared to the BSA control. Collagen heated at 50°C retained 33%, 60°C retained 

47%, 70°C retained 66% and 80°C retained 57% more cells when compared to the 

control

ion. One-way ANOVA, again, 

failed to detect a statistically significant difference in cell adhesion within these treatment 

groups and between all treatment groups tested (P<0.05).  

 (Figure 6.6 A). One-way ANOVA failed to detect a statistically significant 

difference in cell adhesion between these treatment groups (P<0.05).  

We also examined the functional profiles of a 50:50 mix of unheated collagen and 

collagen heated at 50°C, 75 bloom gelatin, 225 bloom gelatin, recovered electrospun 

collagen (calfskin), recovered electrospun gelatin (225 bloom) and Vitrogen type I 

collagen. The 50:50 mixture of unheated collagen and collagen heated at 50°C retained 

the most cells, on average 85% more cells became attached to this surface when 

compared to the BSA control (Figure 6.6 B). Recovered electrospun collagen also 

supported very high levels of cell adhesion with 64% more cells attaching to this surface. 

The 225 bloom gelatin (41%), Vitrogen type I collagen (35%) and recovered electrospun 

gelatin (26%) coated scaffolds all had similar adhesion performance. The 75 bloom 

gelatin (13%) coated scaffolds exhibited the lowest adhes
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Figure 6.6 A-B. Analysis of HDF adhesion. Plot of change in cell adhesion when 
plated onto thermally denatured calfskin collagen (A) or collagen-based (B) coated 
scaffolds. Results are expressed as a function of BSA control For the thermally 
denatured calfskin collagen, cell adherence was lowest on scaffolds coated with C50 
and highest on scaffolds coated with C70. For the collagen-based scaffolds, cell 
adherence was lowest on G75 and highest on scaffolds coated with Mix C/50 and rEC. 
Error bars are ± standard error. Note: the dashed line indicates BSA control baseline 
conditions. 
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Changes in collagen structure can uncover cryptic RGD-dependent binding sites. 

To determine how thermal manipulation and the electrospinning process impact the 

collagen molecule we next challenged HDF in adhesion assays with cyclic RGD 

peptides. Assays were first conducted with cells plated onto tissue culture plates coated 

with collagen, laminin or fibronectin. In these experiments, pre-treatment with the RGD 

peptide decreased total cell adhesion as a function of increasing concentration. For 

example, with respect to control (un-treated cultures) RGD at a concentration of 1 g/ml 

suppressed adhesion by 74% on Vitrogen type I collagen, 68% on laminin and 46% on 

fibronectin (Figure 6.7). In addition, the control peptide appeared to have no affect on 

cell adhesion. Analysis by one-way ANOVA detected a statistically significant difference 

between Vitrogen type I collagen treated with 1 μg/ml peptide and fibronectin treated 

with 0.01 μg/ml peptide (P<0.05).  

When we conducted adhesion assays with different ECM proteins prepared on 

electrospun fibers of nylon we observed similar results. The adhesion of cells to 

denatured collagens was blocked by RGD peptide challenge (Figure 6.8). Cell adhesion 

on collagen heated at 700 was suppressed up to 60% and recovered electrospun gelatin by 

41%, when the cultures were challenged with 1 μg/ml peptide. Adhesion on collagen 

heated at 500C and recovered electrospun collagen were unaffected by the RGD peptides. 

A modest decrease in adhesion to Vitrogen type I collagen occurred in these same assays. 

However, we note that cells plated onto Vitrogen that had been applied to tissue culture 

plates were far more susceptible to RGD challenge than cells plated onto Vitrogen 
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prepared on the electrospun nylon scaffolds. Statistical analysis by one-way ANOVA 

failed to detect a statistically significant difference between groups (P<0.05). 
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Figure 6.7. Analysis of HDF adhesion inhibition on protein coated wells. Plot of 
change in cell adhesion with increasing concentrations of RGD peptide. Results are 
expressed as a function of no peptide added. Cell adhesion was inhibited on all 
proteins. A statistically significant difference was detected between Vitrogen type I 
collagen treated with 1 μg/ml peptide and fibronectin treated with 0.01 μg/ml peptide 
(P<0.05). Error bars are ± standard error.  
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Figure 6.8. Analysis of HDF adhesion inhibition on collagen-based coated scaffolds. 
Plot of change in cell adhesion with increasing concentrations of RGD peptide. 
Results are expressed as a function of no peptide added. Denatured collagens (C70 and 
rEG) exhibited reduced cell adhesion while non-denatured collagens (C50 and rEC) 
demonstrated no change in cell adhesion, with the exception of non-denatured VC 
which revealed slightly reduced adhesion. No statistically significant differences were 
detected. Error bars are ± standard error. 
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HDF Migration. Migration assays were conducted on electrospun nylon 

scaffolds coated with control unheated collagen, collagen heated at 50°C, collagen heated 

at 70°C, recovered electrospun collagen, recovered electrospun gelatin or Vitrogen type I 

collagen. These experiments were done in the presence and absence of PDGF, a growth 

factor that plays a critical role in signaling the interstitial cell population during the 

wound healing cascade [1][84][141]. In control (cultures not treated with PDGF) the total 

measured cell area remained nearly unchanged over the 96 hr interval of culture with 

respect to baseline controls (20 mm2) (Figure 6.9 A). Scaffolds coated the BSA control, 

unheated collagen and collagen heated at 50 or 70°C exhibited cell culture surface areas 

of 20.9 ± 2.8, 16.1 ± 1.9, 21.9 ± 2.2 and 20.5 ± 7.7 mm2, respectively (mean ± standard 

deviation). Cells plated onto scaffolds coated with recovered electrospun collagen (26.0 ± 

10.9 mm2), recovered electrospun gelatin (27.7 ± 6.6 mm2) and Vitrogen type I collagen 

(24.9 ± 8.1 mm2) qualitatively occupied slightly more area. Screening these data sets with 

two-way ANOVA failed to detect any differences in these treatment groups.  

HDFs cultures treated with PDGF typically expanded their cell area nearly two-

fold with respect to the originally plated cell area (20 mm2) (Figure 6.9 A). Scaffolds 

coated with control (22.8 ± 1.2 mm2) did not notably expand cell area (109% with respect 

to untreated control). Scaffolds coated with unheated collagen (41.9 ± 6.9 mm2), collagen 

heated at 50°C (47.9 ± 15.1 mm2) and recovered electrospun collagen (54.8 mm2 ± 5.1 

mm2) exhibited the largest increase in cell culture surface area in response to PDGF (261, 

219 and 211%, respectively, with respect to untreated controls) (Figure 6.9 B). Collagen 

heated at 70°C (39.8 ± 14.0 mm2), recovered electrospun gelatin (39.0 ± 4.2 mm2) and 
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Vitrogen type I collagen (41.0 ± 14.6 mm2) supported similar degrees of migration (and 

demonstrated a change of 194, 141 and 164 %, respectively, with respect to untreated 

controls). Analysis by two-way ANOVA detected statistically significant differences 

between non-PDGF and PDGF incubated scaffolds, as well as statistically significant 

differences between the control and recovered electrospun collagen and collagen heated 

at 50°C and also between the recovered electrospun collagen and recovered electrospun 

gelatin coated scaffolds (P<0.05). Overall, cultures of HDFs incubated with PDGF appear 

to be extremely mobile while cultures incubated without PDGF demonstrated very little 

movement of any kind.   
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Figure 6.9 A-B. Analysis of HDF migration. Plot of cell area of HDFs (A) plated onto 
collagen-based coated scaffolds cultured with and without PDGF. All scaffolds 
cultured with HDFs and incubated with media not supplemented with PDGF exhibited 
little evidence of migration across the scaffold. No statistical difference in migration 
area was detected between any of the coated scaffolds incubated without PDGF. All 
scaffolds cultured with HDFs and incubated with PDGF supplemented media 
demonstrated high mobility over the scaffolds, typically expanding their cell area at 
least two-fold. With respect to the untreated groups, scaffolds treated with PDGF had 
significantly higher mobility (B). For PDGF supplemented treatment groups, 
statistically significant differences were detected between the BSA and rEC and C50, 
as well as between rEC and rEG coated scaffolds (P<0.05). Error bars are ± standard 
error. Note: the dashed line in (B) denotes baseline conditions. 
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HDF Proliferation. Varying rates of cell migration and changes in cell number 

clearly play a role in dictating total cell culture surface area. To investigate how changes 

in cell number contribute to our results we next prepared scaffolds coated with unheated 

collagen, collagen heated at 50°C, collagen heated at 70°C, recovered electrospun 

collagen, recovered electrospun gelatin or Vitrogen type I collagen. Once again, these 

experiments were done in the presence or absence of PDGF. After 24 hr, cell number on 

all scaffolds remained unchanged in the cultures treated with control media (with respect 

to the BSA control) (Figure 6.10). After 96 hr all of the scaffolds incubated without 

PDGF, with the exception of those coated with recovered electrospun collagen or 

Vitrogen type I collagen, remained. With respect to change in cell number from 24 to 96 

hr in the absence of PDGF, cultures plated onto unheated collagen exhibited the greatest 

drop in cell number (39% of controls) and cultures plated onto Vitrogen type I collagen 

exhibited the highest number of cells (118% of controls) (Figure 6.11 A and B). The BSA 

control, collagen heated at 50 or 70°C, recovered electrospun collagen and recovered 

electrospun gelatin exhibited essentially no change from 24 to 96 hr and yielded results of 

80, 72, 89, 94 and 99%. Analysis by two-way ANOVA did not detect any statistical 

differences between any of the scaffolds cultured in the absence of PDGF. 

 The response of the cells to PDGF was highly variable and varied as a function of 

scaffold composition. Cell number remained constant over the first 24 hr interval of 

culture (Figure 6.10). However, by 96 hr, cell number increased (with respect to 24 hr) in 

cultures plated onto unheated collagen (180% of control), collagen heated at 50°C (233% 

of control), collagen heated at 70°C (146% of control) and Vitrogen type I collagen 
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(130% of control) (Figure 6.11 A and B). Cultures plated onto the BSA control, 

recovered electrospun collagen and recovered electrospun gelatin remained relatively 

unchanged over this same interval (96, 99 and 115% of control). Analysis by two-way 

ANOVA detected statistically significant differences between non-PDGF and PDGF 

incubated scaffolds, as well as a statistically significant difference between collagen 

heated at 50°C and all other treatment groups, with the exception of unheated collagen 

(P<0.05). These results again underscore the crucial role PDGF plays in guiding cell 

processes; both HDF migration and proliferation were greatly enhanced with the addition 

of PDGF supplemented media.  
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Figure 6.10. Analysis of HDF proliferation. Plot of cell number (as judged by 
GAPDH intensity) when plated onto collagen-based coated scaffolds (at 24 and 96 hr, 
with and without PDGF). Results are expressed as a function of BSA control. At 24 
hr, cell number on all scaffolds was similar. At 96 hr, scaffolds incubated without
PDGF exhibited no change or a slight increase in cell number while scaffolds 
incubated with PDGF demonstrated no change or a significant increase in cell number. 
Error bars are ± standard error.  
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Figure 6.11 A-B. Analysis of HDF proliferation. Plots of change in cell number (as 
judged by GAPDH intensity) from 24 to 96 hr (A and B). For scaffolds incubated 
without PDGF, change in cell number dropped or remained the same. No statistically 
significant differences were detected between any of the non-PDGF supplemented 
treatment groups. For scaffolds incubated with PDGF, C, C50 and C70 demonstrated a 
large increase in cell number from 24 to 96 hr while all other treatment groups 
exhibited little or no change. Statistically significant differences were detected 
between C50 and all other PDGF supplemented treatment groups, with the exception 
of C (P<0.05). Error bars are ± standard error. 

 189



www.manaraa.com

   

DISCUSSION 

  

 In this study we examined how the chemical and physical composition of the 

local microenvironment and exposure of RGD sensitive binding sites influences cellular 

processes. By using electrospun nylon as a foundation material and coating it with 

proteins of interest, we were able to create scaffolds with identical pore dimensions, fiber 

sizes and material properties, thus allowing us to pinpoint any differences in adhesion, 

proliferation or migration as a result of protein coating identity. In this study we describe 

the use of a number of novel assays in examining how various degrees of thermal 

denaturation and the electrospinning process might alter collagen function in adhesion, 

migration and proliferation.  

 

 Protein Analysis. We examined collagen structure as a function of thermal 

denaturation by SDS gel electrophoresis in order to characterize the physical state of the 

proteins of interest and their similarities to one another. Protein analysis of type I 

collagen heated for varying lengths of time (Figure 6.4 A) or at varying temperatures for 

a fixed interval (Figure 6.4 B) demonstrated that while both temperature and exposure 

time play a role in the denaturation of proteins, temperature is the key variable 

controlling protein fragmentation in this type of sample. This result is consistent with 

previous reports indicating that collagen isolated from rat tail tendon does not exhibit any 

substantive changes in structure at temperatures below 54°C [139]. It appears that a 

specific heat threshold is needed to induce significant fragmentation of the collagen α 
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chains; a rise in temperature rapidly increases the rate and extent to which these chains 

are broken down. While our experiments did show some protein degradation with 

prolonged heat exposure (at a temperature below 54°C), this process appears to be 

considerably more gradual then exposure to higher temperatures.  

 Recently, questions have arisen regarding the effect of the electrospinning process 

on the integrity of the collagen triple helical structure. In past studies we have 

demonstrated that electrospun collagen exhibits a 67 nm repeat that resembles the native 

polymer [13][15]. However, not all investigators have observed the formation of this 

characteristic structure in fibers of electrospun collagen and it is unclear where this 

discrepancy might arise [97]. Our protein analysis (and subsequent assays) detected no 

difference between non-electrospun and electrospun collagen (Figure 6.5, lanes 2 and 3) 

with respect to apparent protein structure, cell adhesion processes, cell migration or 

proliferation. Analysis of the 75 and 225 bloom commercially purchased gelatin revealed 

that these products behaved similar to collagens exposed to thermal denaturation and 

exhibited substantial α chain fragmentation (Figure 6.5, lanes 5 and 6). This result is in 

contrast to the expected results; a higher bloom number indicates a higher triple helix 

content but our analysis demonstrated no discernable difference between the triple helix 

content of the 75 and 225 bloom gelatin [135].   

 

HDF Adhesion. Adhesion assays conducted on thermally degraded collagen 

proteins yielded results that indicate an unmasking of RGD binding sites during thermal 

denaturation. While a number of integrins (α1β1, α2β1, α3β1) bind to type I collagen in a 
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RGD-independent manner, integrin αvβ3 binds very strongly to denatured collagen in a 

RGD-dependent manner [138]. Upon denaturation of type I collagen, RGD sites appear 

to become exposed, allowing the cells to bind to these sites through the αvβ3 integrin 

[138][140]. The implications concerning this unmasking phenomenon are crucial in the 

understanding of the wound healing process; the unmasking of RGD peptides in injured 

tissue and the subsequent integrin binding to these peptides indicates a highly regulated 

signaling method that may play a role in determining the outcome of the wound healing 

process. 

In our experiments, lower adhesion was seen on scaffolds coated with collagen 

thermally denatured at 50 and 60°C; the modest degree of α chain fragmentation seen in 

these samples may explain this result (Figure 6.4 B, lanes 3 and 4). These proteins are no 

longer completely composed of native type I collagen, but the transition to a fully 

denaturated protein has not occurred. It is possible that the RGD-independent adhesion 

sites used by integrins (α1β1, α2β1, α3β1) are destroyed or becoming masked during 

collagen denaturation (as RGD sites become unmasked) and since these proteins are only 

slighted denatured, the number of unmasked RGD peptides may be minimal. Conversely, 

the peak in cell adhesion observed on scaffolds coated with collagen thermally denatured 

at 70°C may be indicate a more complete exposure of the RGD sites and, consequently, 

αvβ3 or perhaps α5β1 binding to these sites. The highest levels of adhesion were seen on 

scaffolds coated with a mixture of non-denatured collagen and collagen thermally 

denatured at 50°C. The elevated adhesion levels on the mixed protein coating may be 
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attributed to high binding site availability due to non-denatured collagen RGD-

independent and denatured collagen RGD-dependent binding occurrences.  

Overall, electrospun nylon scaffolds coated with commercially purchased proteins 

(75 and 225 bloom gelatin, recovered electrospun gelatin and Vitrogen type I collagen) 

had the lowest levels of adhesion. Scaffolds coated with commercially purchased gelatin 

(75 bloom gelatin, 225 bloom gelatin and recovered electrospun gelatin), proteins which 

demonstrated similar α chain fragmentation to collagen thermally denatured at 80°C, 

exhibited lower levels of adhesion than their “corresponding” calfskin collagen 

counterpart (Figure 6.6 B). It is feasible that these proteins were so degraded as to not 

have functional binding sites. This conclusion is supported by the protein separation 

studies that revealed these materials exhibit virtually no  chains. The lower adhesion 

exhibited on Vitrogen type I collagen fractions may be attributed to the lack of 

telopeptides present (this collagen is pepsin solubilized, a process that may or may not 

damage collagen structure) or its high level of purity; while not visible on our protein 

gels, we cannot exclude the activity of possible contaminating proteins present in our 

collagen fractions that aided in cell adhesion.  

Adhesion inhibition assays conducted on tissue culture plastic demonstrated the 

viability of the cyclic RGD peptide at inhibiting adhesion. An expected decrease in 

adhesion (as a function of increasing peptide concentration) was seen on laminin and 

fibronectin; integrins bind to these proteins in an RGD-dependent manner. The slight 

decrease in adhesion exhibited on Vitrogen type I collagen (which was also seen on 

assays conducted with Vitrogen prepared on electrospun scaffolds of nylon) was less 
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expected; integrins primarily bind to this protein in an RGD-independent manner. Given 

that RGD binding site exposure is believed to occur on thermally degraded proteins, 

questions arise regarding possible collagen degradation during the preparation of this 

collagen, specifically during the pepsin-solubilization step. 

Cells plated onto electrospun scaffolds of nylon coated with the denatured protein 

fraction were sensitive to RGD challenge. Conversely, cells plated onto the non-

denatured isoforms were not sensitive to this treatment, indicating the RGD dependent 

binding sites are exposed when collagen is damaged. Adhesion to collagen heated at 70° 

was very sensitive to RGD challenge, even at lower doses, again indicating that this level 

of degradation induces a mass exposure of RGD binding sites. The adhesion assays 

conducted demonstrated that electrospun collagen supports high levels of adhesion 

(similar to that of unheated collagen) and adhesion was not inhibited with the RGD 

peptide, indicating that binding is occurring through a RGD-independent manner. 

 

HDF Migration and Proliferation. Migration and proliferation assays conducted 

on a variety of collagen proteins yielded results that correlate well to cell adhesion 

results. The highest levels of migration and proliferation were demonstrated on scaffolds 

that exhibited intermediate levels of adhesion strength and number. If adhesion is too 

weak or too few adhesions have been made, a cell cannot develop enough traction to 

propel forward (or divide) and if adhesion is too strong or too many adhesions have been 

made, it is difficult for cells to release from the substrate and undergo motile activity 

[142]. However, recovered electrospun collagen exhibited excellent adhesion and 
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migration results but did not change with regards to cell proliferation. This result is 

reminiscent of the early presence of fibroblasts in wound healing; when fibroblasts are 

signaled to a wound bed, the immediate task of the fibroblast is migration and infiltration, 

proliferation occurs at a later time point [1]. 
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CONCLUSION 

 

 Based on our gel analysis and the results of our functional assays we conclude 

that collagen  chain structure is not directly altered by the electrospinning process. 

Exposure to HFIP, the electrospinning process itself and subsequent recovery of the 

protein from the resulting scaffolds did not alter cellular response to the parent molecule. 

We believe that processing variables that occur prior to the actual electrospinning process 

may be responsible for some of the conflicting reports concerning the structure of 

electrospun collagen [13][15][97]. In our experience we have observed that the collagen 

is very susceptible to over-drying and denaturation during the lyopholization steps used 

to prepare the material for electrospinning. In essence, it is not possible to induce native 

fiber structure into an electrospun collagen fiber if a partially denatured form of the 

molecule is used to prepare that fiber. We also note that the structure of electrospun 

collagen can be extensively modulated in post-processing. These scaffolds must be cross-

linked in order to be useful as tissue engineering scaffolds. The identity of the cross 

linking agent and the actual extent to which a scaffold is cross-linked directly impacts the 

physically properties of electrospun collagen [89].  

The assays described in this paper represent a systematic method for the 

evaluation of protein structure. Cellular processes are controlled by a complex orchestra 

of events; however, it is clear that identity and structure of the surrounding ECM play a 

crucial role in directing these processes. The exposure or unmasking of RGD sites 

through the denaturation of collagen proteins represents an important regulatory step in 
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the wound healing paradigm; if tissue injury causes collagen denaturation, exposure of 

RGD sites to a cell may represent a signaling cue that alters cell phenotype and literally 

prepares the fibroblasts to reconstitute the damaged ECM. Our results suggest that cell 

phenotype can be regulated by the composition and architecture of the ECM, how this 

might be exploited to modulate the wound healing process remains to be fully defined. 
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CHAPTER 7 Overall Conclusions and Future Directions 
 

Defining the complex and multifunctional nature of the native ECM remains an 

active component of the research endeavor. Fundamentally, scaffolds must provide the 

structural integrity necessary to support normal cell function and interaction in three-

dimensional space. This structural integrity is established by a variety of factors, some of 

which are determined at the onset of scaffold fabrication (i.e. material identity, fiber 

alignment) while others result from additional processing methods utilized post-

fabrication (i.e. cross-linking).  Progress regarding scaffold composition and methods 

designed to control various aspects of scaffold architecture and function should yield 

insights into the processes that regulate normal tissue hemostasis. Characterizing the 

structural and molecular distinctions of the native ECM will aid in the production of 

meaningful scaffolds.  

 In this study, structural issues were first addressed. Architectural features play a 

central role in determining the material properties of the native ECM and classically, 

material identity has been the chief variable examined with regards to scaffold strength. 

However, our results clearly demonstrate that it is also necessary to take into account the 

relative degree of fiber alignment present in an electrospun material. It is likely that 

subtle changes in alignment can be correlated with specific material properties and/or 

features that control cell phenotype. Structural properties are critical in determining 
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wound resolution; the material properties felt by individual cells must initiate and allow 

normal cell processes to occur. For example, the stiffness of individual fibers has a 

significant impact in determining the differentiation of a fibroblast to a myofibroblast, a 

cell type that is critical with regards to wound closure [25]. In addition, the degree of 

alignment in a scaffold may direct cells in terms of phenotype or migratory processes. 

While much of our investigation centered on determining the point of induction and 

presence of alignment in a scaffold (a quality that is ideal for applications involving 

tendons and ligaments), the FFT technique can just as easily be used to observe the 

absence of alignment in a scaffold (a characteristic necessary for dermal applications).  

Addressing the bulk structural properties of a scaffold is vital with regards to 

clinical relevance. A dermal template must allow for easy handling; this feature may be 

determined by a variety of considerations such as material identity, initial starting 

concentration (and consequently fiber and pore size) and scaffold thickness. However, 

the main point regarding clinical relevance is that a clinically-relevant scaffold must be 

one that is effortless with regards to clinician handling and implantation. A scaffold 

implant that is difficult to manage and maneuver will not encounter clinical success.  

 In addition to addressing scaffold structural issues, the work here examined the 

molecular properties and biological cues divulged to cells through scaffold material 

identity. Our efforts were focused on type I collagen, a protein native to the ECM that 

appears to impart unique biological properties to scaffold constructs [15]. While both 

extremes of non-denatured and denatured collagen have been examined, a study 

investigating the relative degree of collagen protein degradation and how this 
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characteristic impacts biological processes had yet to be conducted. Based on our results, 

it appears that the actual degree of protein denaturation plays a role in directing cell 

processes and causes the exposure of cryptic RGD sites that then become available for 

integrin binding. This insight is crucial with regards to tissue injury and would resolution; 

if tissue injury causes collagen denaturation, the exposure of RGD binding sites to a cell 

may represent a signaling cue that is necessary for wound resolution. Although native 

non-denatured collagen is a highly regarded scaffold material, the placement of a dermal 

template composed of materials that represent a mature and healthy matrix into an 

immature wound bed may communicate the wrong message to cells that are awaiting 

signaling cues regarding wound remodeling. However, denatured collagen implant 

studies conducted in our laboratory resulted in significant inflammation while implanted 

collagen induced nominal, if any, inflammation (see figure 2.4) [15]. The most 

advantageous scaffold may be one that utilizes a mixture of both non-denatured and 

denatured collagen (as evidenced by our adhesion results when HDFs were plated onto a 

mixture of non-denatured collagen and collagen denatured at 50°C).  

 One of the most interesting aspects of this work was the examination of how the 

electrospinning process might alter collagen function. This inquiry was conducted by 

using our SDS gel electrophoresis and HDF assay results that utilized denatured collagen; 

the results from these proteins were used as a barometer to determine whether protein 

degradation was occurring during the electrospinning process. Overall, it appears that the 

electrospinning process does not degrade the collagen protein and does not significantly 

alter the biological cues presented to cells through matrix molecules. This result is critical 
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in regards to understanding the structure and function of a scaffold material; if the 

fabrication technique is adversely altering the material, the actual identity, structure and 

function of the implanted material is unknown.  

 Overall, designing a scaffold that in any way mimics the role of the native ECM is 

an intricate and complicated task. In regards to wound resolution, a dermal template must 

support regular cell function and offer the correct biological cues; cells must be able to 

adhere and remodel the scaffold as they migrate across it, all the while undergoing 

proliferation to increase cell presence and differentiation into the correct cell type needed 

for eventual wound closure and resolution. The structural and functional characteristics 

investigated in this study must be addressed in order to fabricate a functional dermal 

template that improves wound resolution. 

  

FUTURE DIRECTIONS 

 

Future directions regarding this research should begin with further in vitro inquiry 

into the proteins and how they alter cell function. It would be interesting to explore cell 

remodeling (collagen synthesis and degradation) as a function of the thermally denatured 

proteins; further examination into scaffolds containing a mixture of both non-denatured 

and denatured proteins would also be useful. More specifically, the investigation of MMP 

expression of fibroblasts on the different proteins would provide insight into how these 

scaffolds may function in vivo. Additionally, examining cell function on these proteins 

when fully electrospun (not just coated onto nylon scaffolds) is necessary to examine 
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how fiber diameter, pore size and material properties alter cell function on the proteins. 

Following in vitro investigations, in vivo experiments using the electrospun proteins 

would be the next phase. Dermal implantation of electrospun scaffolds composed of non-

denatured, denatured and a mixture of non-denatured and denatured calfskin type I 

collagen proteins, followed by a wound bed histology examination, would yield realistic 

insights into scaffold function. Overall, the main direction of any further research should 

be to examine the functionality of scaffolds composed of both non-denatured and 

denatured collagen proteins and how this functionality may be exploited to promote 

scarless wound resolution. The cell penetration and non-inflammatory properties of non-

denatured collagen scaffolds combined with the active remodeling characteristics 

observed on denatured collagen scaffolds may work in concert to improve wound 

resolution. Furthermore, it may also be valuable to investigate the addition of RGD 

peptides onto a non-denatured collagen electrospun scaffold. The addition and presence 

of these binding sites on a protein may provide the correct signaling cues to cells without 

the addendum of denatured collagen. 
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APPENDIX A 
 

Control of Fiber Alignment: Electrospinning Voltage and Air Gap 
Distance 

 

Preface: The work included in Appendix A was originally conducted for the manuscript 

found in chapter 4 titled “Modulation of anisotropy in electrospun tissue-engineering 

scaffolds: analysis of fiber alignment by the fast Fourier transform”. However, length 

constraints prompted the removal of the results from the published manuscript. This work 

demonstrates the effect of electrospinning voltage and air gap distance on the induction 

of anisotropy in electrospun scaffolds. 
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MATERIALS AND METHODS 

 

Electrospinning. Reagents were purchased from Sigma Aldrich (St. Louis, MO) 

unless noted. Gelatin was suspended in 2,2,2 trifluoroethanol (TFE) for 48 hr prior to 

electrospinning. Starting concentrations of 130 mg/ml TFE were prepared. Suspensions 

were electrospun onto a stainless steel rectangular mandrel (70 mm x 10 mm x 5 mm) as 

previously described. The gelatin solution was delivered at a rate of 21 ml/hr and the 

target mandrel speed was set to 4000 RPM (this speed was chosen to maximize fiber 

alignment). A digital stroboscope (Shimpo Instruments DT3-11A) was used to 

continuously monitor the RPM of the target mandrel. Samples were stored in a 

desiccation chamber prior to analysis. 

 

Light Microscopy. All imaging and materials testing was conducted with dry, 

unfixed samples. This approach was selected to allow us to make direct comparisons 

between the different analytical approaches described in this study. Dry sheets of 

electrospun gelatin were cut into 10 mm diameter disks using a circular biopsy punch. 

Samples were imaged with a Nikon TE300 microscope equipped with a Nikon DXM 

1200 digital camera. Images (3840 x 3072 pixels) were captured with a 20X (0.40 n.a.) 

bright field objective lens, resulting in pixel dimensions of 0.17 x 0.18 m. 

 

Fast Fourier Transform (FFT). Digitized bright field light microscopic images 

were converted to 8-bit grayscale .TIF files and cropped to 2048 x 2048 pixels. Images 
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were processed using ImageJ software (NIH, http://rsb.info.nih.gov/ij) as previously 

described. All FFT data was normalized to a baseline value of 0 and plotted in arbitrary 

units, allowing different data sets to be directly compared. 
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RESULTS 

 

We used FFT analysis to examine how electrospinning variables, namely voltage 

and air gap distance, impact scaffold structure. To test the effects of voltage, a gelatin 

solution was electrospun over an air gap distance of 20 cm and the voltage applied when 

electrospinning each individual scaffold was 10, 15, 22 or 30 kV. Electrospun fibers 

formed at each voltage tested. The FFT alignment values increased as a function of 

voltage and reached nearly 0.10 units in scaffolds electrospun at 30 kV (Figure A.1 top). 

We have previously reported that the evolution of an aligned scaffold begins at 

approximately 0.05 FFT units, thus the electrospinning solutions charged to 10 and 15 kV 

failed to produce scaffolds composed of aligned elements (these scaffolds had FFT values 

of approximately 0.04 units) even under other theoretically ideal conditions (large 

starting concentration and high mandrel speed). Scaffolds produced from electrospinning 

solutions charged to 20, 25 and 30 kV all produced scaffolds made up of aligned fibers 

(0.07, 0.08 and 0.09 FFT units, respectively). 

To examine how air gap distance affects scaffold structure, a gelatin solution was 

electrospun at a voltage of 30 kV over an air gap distance 5, 10, 15, 20, 25 or 30 cm for 

each individual scaffold. Scaffolds electrospun over an air gap distance of 5 and 30 cm 

produced scaffolds composed of random elements; the FFT values for these scaffolds 

were 0.03 and 0.04 units, respectively (Figure A.1 bottom). Scaffolds electrospun across 

an air gap of 10, 15, 20 and 25 cm demonstrated alignment values that increased 

sequentially with greater air gap distance. The scaffold electrospun over 10 cm had an 
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intermediate alignment value of 0.07 units and the scaffolds electrospun across an air gap 

of 15 and 20 cm demonstrated FFT alignment values of 0.09 units. FFT alignment peaked 

at an air gap distance of 25 cm with an FFT alignment value of 0.1 units. 
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Figure A.1. Electrospun gelatin scaffold (130 mg/ml) alignment as a function of 
varying voltage (top) and air gap distance (bottom). Degree of alignment improved 
sequentially as voltage increased and air gap distance lengthened.  
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DISCUSSION 

 

We propose that interactions between local movements within the charged jet and 

the overall trajectory of a forming fiber underlie the induction of scaffold anisotropy in 

our electrospinning system. A charged electrospinning jet grossly follows a spiraling 

pathway across the air gap. Bending instabilities develop in the forming fiber, leading to 

the formation of small scale loops. In response to solvent evaporation and increased 

charge density these loops elongate and thin in parallel with the longitudinal axis of the 

forming fiber. Loop formation and elongation are believed to occur sequentially, and 

repeatedly, along the forming fiber for as long as charge repulsions can overcome the 

viscosity of the drying jet.  

Increasing the electrospinning voltage and air gap distance induced a higher 

degree of alignment into the scaffolds, indicating that an increased charge and greater air 

gap distance aids in dampening the whipping motions of an electrospun fiber.  However, 

alignment was not induced for solutions charged to low voltages (10 and 15 kV), 

indicating that the charge was not large enough to control and direct the fiber across the 

electrospinning air gap. It is likely that the fibers did not have a large charge density and 

were thus approaching and depositing onto the mandrel in a loop formation from a 

number of directions, thus created a scaffold composed of random elements. Alignment 

was also not achieved for solutions electrospun over a very short (5 cm) or long (30 cm) 

air gap distance, results that may be attributed to solvent evaporation. A fiber moving 

across the air gap toward a close target is likely still wet and at a very high potential when 
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it reaches the mandrel; a fiber in this state has not had enough time to dry and elongate as 

it approaches the mandrel for deposition. Conversely, a fiber moving across the air gap 

toward a distant target may have dried some time ago and would act similar to a fiber 

only charged to 10 or 15 kV.  

Overall, small diameter fibers undergo high velocity, erratic, whipping motions in 

the electrospinning air gap. These motions are associated with a considerable degree of 

radial displacement of the charged jet from the central electrospinning axis as the forming 

fiber traverses the spiral pathway. These macroscopic deviations from the central 

electrospinning axis “present” the fiber to the target mandrel in a variety of different 

orientations. Local bending instabilities further degrade alignment, especially at low 

mandrel RPM. Apparently, evidence of these small scale instabilities may be partially 

preserved in the tortuous profile that small diameter fibers can exhibit upon deposition 

onto the target mandrel. At higher RPMs, fiber tortuosity may be reduced to some degree; 

however, as a population, overall fiber alignment is nominal. In the electrospinning of 

larger diameter fibers, the increased inertia and mass of the charged jet/forming fiber 

appears to dampen the radial displacement of the spiral pathway. This allows large 

diameter fibers to take a nearly linear trajectory across the electrospinning air gap. The 

mass of large diameter fibers also appears to suppress the formation of local bending 

instabilities, resulting in a nearly linear fiber at deposition. 
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APPENDIX B 
 

Modulation of Electrospun Scaffolds through Cross-Linking 
 

Preface: The work included in Appendix B was originally conducted for a manuscript 

published in Acta Biomaterialia, 2009, volume 5, pages 518-529, titled “Regulation of 

material properties in electrospun scaffolds: role of cross-linking in fiber tertiary 

structure”, authored by D Newton1, R Mahajan1, CE Ayres2, JR Bowman3, GL Bowlin2 

and DG Simpson3. This work explores how cross-linking modulates the material 

properties of an electrospun scaffold. 
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MATERIALS AND METHODS 

 

Collagen Isolation. Type I collagen was acid-extracted from calfskin corium 

(animals <6 months old; Lampire Biologics, Pipersville, Pa.). Corium was defrosted at 

40C, diced into 10-20 cm3 squares and placed into ice cold distilled water at a 

concentration of 25-50 g of solid per liter of solution. Glacial acetic acid was added to the 

suspension to bring the molarity to 0.5M, the solution was stirred and allowed to incubate 

for 12 hr at 40C. The ice cold suspension was then homogenized in a commercial grade 

blender (Waring) in 10-15 second bursts to limit heating. After an additional 48 hr of 

incubation at 40C under gentle stirring, the resulting collagen-rich solution was 

centrifuged for 12 hr at 14,000G (40C). Pellets were discarded, and the supernatant was 

dialyzed against 20 volumes of 18 MΩ-cm water. Water was changed 3-4 times while 

maintaining the dialysis at 40C. The extract was then frozen to -700C and lyophilized 

until dry. 

 

Electrospinning. Reagents were purchased from Sigma Aldrich (St. Louis, MO) 

unless noted. Collagen was suspended in 2,2,2 trifluoroethanol (TFE) at 55, 70 or 90 

mg/ml for 24 hr prior to electrospinning. Collagen suspensions were electrospun onto a 

stainless steel rectangular mandrel (70 mm x 10 mm x 5 mm) as previously described. 

The collagen solution was delivered at a rate of 8-12 ml/hr over an air gap distance of 20 

cm and the target mandrel speed was set to 200 RPM to ensure the production of 

scaffolds composed of random elements. A digital stroboscope (Shimpo Instruments 
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DT3-11A) was used to continuously monitor the RPM of the target mandrel. Samples 

were stored in a desiccation chamber prior to analysis. 

 

Materials Testing. Collagen scaffolds prepared from 55 mg/ml suspensions were 

removed from the mandrel and cut into dumbbell shaped samples using a die punch (2.67 

mm wide, gauge length of 0.295 mm). The samples were then immersed in 0% (100% 

ethanol) 0.1%, 1%, 10% or 40% v/v glutaraldehyde prepared in ethanol for 12 hr. After 

cross-linking, each sample was sequentially washed in 15 minute rinses in 5%, 10%, 

25%, 50%, and 75% PBS prepared in ethanol, followed by two PBS rinses. We have 

found that this graded series of rinses reduces solvent induced changes in fiber diameter 

(swelling). The thickness of each hydrated dumbbell shaped sample was determined with 

a Mitutoyo IP54 digital micrometer (Mitutoyo American Corp; Aurora, IL). Scaffolds 

were uniaxially tested to failure at an extension rate of 10 mm/min with a Bionix 200 

Mechanical Testing Systems instrument (MTS Systems Corp, Eden Prairie, MN). Data 

sets were screened by one-way ANOVA (P<0.01) to test for the effects of cross-linking 

on material properties.  

 

Cross-Linking Assay. Collagen scaffolds were removed from the mandrel and 

cut into 12 mm diameter disks using a dermal biopsy punch. The samples used for 

examining degree of cross-linking with regards to solvent identity were immersed in 

0.5% v/v glutaraldehyde prepared in PBS, 100% ethanol, 99% water/1% ethanol, 50% 

water/50% ethanol, methanol, isopropyl alcohol or iso amyl alcohol. The samples used 
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for investigating degree of cross-linking as a function of glutaraldehyde fixation were 

immersed in 0% (100% ethanol) 0.1%, 1%, 10% or 40% v/v glutaraldehyde prepared in 

ethanol for 12 hr and rinsed as previously described. All data is expressed as the 

percentage of cross-linking present in a sample with respect to the cross-linking present 

in a dry, un-crosslinked control sample cut from the same sheet of electrospun material as 

the experimental groups [Barnes].  Samples were placed into 2 ml of a solution 

containing 2.0% (w/v) of sodium bicarbonate and 0.25% 2,4,6-Trinitrobenzenesulfonic 

acid (TNBS) prepared in distilled water and heated for 2 hr at 400C. Next, 3 ml of 6M 

HCL was added to each sample and the samples were then incubated an additional 1.5 hr 

at 600C. Aliquots of equal volume from each sample were placed into a 96 well plate and 

read at 345 nm on a Spectramax Plus microplate spectrophotometer (Molecular Devices). 

Percent cross-linking was calculated from the formula: 

 
% Cross-linked = 1-

Absc 

massc 
Absnc 

massnc 
 

Where Absc= absorbance of the cross-linked sample at 345 nm; the unit of mass is given 

in mg. Absnc= absorbance of the untreated or non-cross-linked sample at 345 nm; the unit 

of mass is given in mg. This assay is colorimetric in nature and detects free amines. As 

the percentage of cross-linking increases in a sample, there is a parallel decrease in the 

number of free amines and therefore a decrease in the number of binding sites available 

for TNBS to interact with on the protein substrate.   For statistical analysis, data sets were 

screened by one-way ANOVA, a Tukey test was used in pairwise comparison. 
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RESULTS 

 

Cross-Linking: Varying Solvent Identity. The identity of the solvent used in the 

glutaraldehyde cross-linking solution was examined to determine how solvent identity 

affects degree of cross-linking and maintenance of scaffold integrity. Scaffolds 

electrospun from 55 mg/ml collagen solutions were cross-linked in 0.5% glutaraldehyde 

prepared in PBS, 100% ethanol, 99% water/1% ethanol, 50% water/50% ethanol, 

methanol, isopropyl alcohol or iso amyl alcohol. Scaffolds prepared in iso amyl alcohol 

revealed little cross-linking (38.2%) while scaffolds prepared in PBS or 99% water/1% 

ethanol demonstrated a high degree of cross-linking (68.5 and 70.1%, respectively) 

(Table B.1). However, all of these scaffolds exhibited poor scaffold integrity and showed 

signs of disintegration. Cross-linking the scaffolds in 50% water/50% ethanol or 

isopropyl alcohol produced scaffolds of reasonable structural integrity yet while the 

degree of cross-linking calculated from the water/ethanol solution was 69.2% the 

isopropyl alcohol demonstrated only 34.6% cross-linking. Scaffolds cross-linked using 

methanol and 100% ethanol produced scaffolds of excellent quality and a high degree of 

cross-linking (59.6 and 62.9%). For electrospun collagen scaffolds, the use of ethanol or 

methanol as the cross-linking solvent appears to be advantageous. 
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Table B.1. Electrospun collagen cross-linked with various solvents. Electrospun 
collagen (55 mg/ml) scaffolds were cross-linked in 0.5% glutaraldehyde with the 
above solvents. Scaffolds cross-linked using PBS, 99% water/1% ethanol or iso amyl 
alcohol all yielded unusable scaffolds. Scaffolds cross-linked using 50% water/50% 
ethanol or isopropyl alcohol produced scaffolds of decent quality and in the case of 
50% water/50% ethanol, acceptable cross-linking. Scaffolds cross-linked using 100% 
ethanol or methanol yielded scaffolds of excellent quality and a satisfactory degree of 
cross-linking.  
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Cross-Linking: Varying Glutaraldehyde Percentage. The degree of cross-

linking present in an electrospun scaffold as a function of the percentage of 

glutaraldehyde was investigated in order to determine how cross-linking impacts scaffold 

material properties. In conjunction with these experiments we also examined how 

changes in fiber diameter might impact the degree of cross-linking that occurs in an 

electrospun scaffold. Collagen scaffolds were electrospun from starting concentrations of 

55, 70 and 90 mg/ml and then cross-linked to varying degrees using a range of 

glutaraldehyde (0, 0.1, 1, 10 and 40%). 

The degree of cross-linking present in the samples electrospun from 55 mg/ml 

collagen varied as a function of the initial percentage of glutaraldehyde present at the 

onset of cross-linking (Figure B.2). Our analysis indicated that 40.6% of the available 

sites were cross-linked in samples that were immersed in 0% glutaraldehyde:100% 

alcohol for 12 hr. At 0.1% glutaraldehyde, average cross-linking increased to 48.2%. 

Scaffolds processed in 1% glutaraldehyde were 55.3% cross-linked, scaffolds processed 

with 10% glutaraldehyde were 64.2% cross-linked and scaffolds processed in 40% 

glutaraldehyde were 66.1% cross-linked. One-way ANOVA indicated that samples cross-

linked in 10 and 40% glutaraldehyde were different than samples processed in 0 and 

0.1% glutaraldehyde (P<0.05). There was a subjective increase in the amount of cross-

linking present in samples processed with 0, 0.1, and 1% glutaraldehyde; however, no 

statistical differences were detected among these groups (Figure B.2). In conjunction 

with these experiments we also examined how changes in fiber diameter might impact 

the degree of cross-linking that occurs in an electrospun scaffold.  
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The degree of cross-linking present in the samples electrospun from 70 mg/ml 

collagen varied as a function of the initial percent of glutaraldehyde present at the onset 

of cross-linking (Figure B.2). Our analysis indicated that 44.1% of the available sites 

were cross-linked in samples that were immersed in 0% glutaraldehyde:100% alcohol for 

12 h. At 0.1% glutaraldehyde, average cross-linking increased to 60.6%. Scaffolds 

processed in 1% glutaraldehyde were 61.8% cross-linked, scaffolds processed with 10% 

glutaraldehyde were 65.1% cross-linked and scaffolds processed in 40% glutaraldehyde 

were 65.3% cross-linked. As demonstrated in collagen 55 mg/ml, one-way ANOVA 

indicated that samples cross-linked in 10 and 40% glutaraldehyde were different than 

samples processed in 0 and 0.1% glutaraldehyde (P<0.05).  

The degree of cross-linking present in the samples electrospun from 90 mg/ml 

collagen varied as a function of the initial percent of glutaraldehyde present at the onset 

of cross-linking (Figure B.2). Our analysis indicated that 43.7% of the available sites 

were cross-linked in samples that were immersed in 0% glutaraldehyde:100% alcohol for 

12 h. At 0.1% glutaraldehyde, average cross-linking increased to 53.6%. Scaffolds 

processed in 1% glutaraldehyde were 57.9% cross-linked, scaffolds processed with 10% 

glutaraldehyde were 73.3% cross-linked and scaffolds processed in 40% glutaraldehyde 

were 78.1% cross-linked. One-way ANOVA indicated that samples cross-linked in 10 

and 40% glutaraldehyde were different than samples processed in 0, 0.1 and 1% 

glutaraldehyde (P<0.05).  

For each concentration of glutaraldehyde used in these studies, the degree of 

cross-linking detected was similar in collagen scaffolds electrospun from concentrations 
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of 55 and 70 mg/ml. However, collagen scaffolds electrospun from a concentration of 90 

mg/ml demonstrated significantly different degrees of cross-linking to the 55 and 70 

mg/ml collagen scaffolds. When compared to the 90 mg/ml scaffold cross-linked using 

0% glutaraldehyde, the 55 mg/ml scaffolds cross-linked using 10 and 40% glutaraldehyde 

and the 70 mg/ml scaffolds cross-linked using 0.1, 1, 10 and 40% glutaraldehyde were 

cross-linked to higher degrees. The 90 mg/ml scaffold cross-linked using 1% 

glutaraldehyde was also cross-linked to a significantly higher degree when compared to 

the 70 mg/ml scaffold cross-linked using 0% glutaraldehyde. The 90 mg/ml scaffold 

cross-linked using 10% glutaraldehyde was cross-linked to a significantly higher degree 

when compared to the 70 mg/ml scaffold cross-linked using 0% glutaraldehyde and the 

55 mg/ml scaffolds cross-linked using 0, 0.1 and 1% glutaraldehyde. The 90 mg/ml 

scaffold cross-linked using 40% glutaraldehyde was cross-linked to a significantly higher 

degree than all other when compared to the 55 mg/ml scaffolds cross-linked using 0, 0.1 

and 1% glutaraldehyde and the 70 mg/ml scaffolds cross-linked using 0, 0.1, 1 and 10% 

glutaraldehyde. 
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Figure B.2. Electrospun collagen scaffold cross-linking. Degree of cross-linking 
increases as a function of starting electrospinning concentration and % glutaraldehyde 
in the cross-linking solution.  
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Material Properties. The material properties of the electrospun scaffolds varied 

as a function of the degree of cross-linking present in the samples. Stress at failure in 

scaffolds processed in 100% ethanol that were cross-linked 40.6% was 0.143 MPa 

(Figure B.2 A). This value ranged upward as the degree of cross-linking increased in the 

samples. For example, stress at failure in scaffolds cross-linked 48.2% was 0.255 MPA, 

samples cross-linked 55.3% exhibited a value of 0.283 MPa, samples cross-linked 64.2% 

exhibited a value of 0.317 MPa and samples cross-linked 66.1% exhibited a value of 

0.325 MPa. Screening these data sets by one-way ANOVA indicated that stress at failure 

was similar in scaffolds processed with 10 and 40% glutaraldehyde (P<0.001). These 

results are not surprising given the observation that the percentage of cross-linking 

present in these samples is very similar (64.2 and 66.1% cross-linked, respectively). 

Stress at failure was different in scaffolds cross-linked 48.2, 64.2 and 66.1% with respect 

to scaffolds processed in 100% ethanol and cross-linked 40.6% (P<0.004).   

Strain at failure, as judged by bulk materials testing, also varied as a function of 

the percentage of cross-linking induced into the samples (Figure B.2 B). Scaffolds 

processed in 100% ethanol and nominally cross-linked 40.6% exhibited a strain of 233% 

at failure. Scaffolds cross-linked 48.2% had an average strain value of 168% at failure, 

scaffolds cross-linked 55.3% demonstrated an average strain value of 210% at failure, 

scaffolds cross-linked 64.2% exhibited an average strain value of 169% at failure and 

scaffolds cross-linked 66.1% revealed an average strain value of 123% at failure. Once 

again, screening these data sets by one-way ANOVA indicated that strain at failure was 

similar in scaffolds processed in 10% glutaraldehyde (64.2% cross-linked) and 40% 
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glutaraldehyde (66.1% cross-linked) (P<0.005). Strain at failure in these scaffolds was 

different with respect to scaffolds cross-linked 40.6% (P<0.005). In addition, strain was 

different in scaffolds cross-linked 66.1% with respect to scaffolds cross-linked 55.3% 

(P<0.005), and scaffolds cross-linked 48.2% were different from scaffolds cross-linked 

40.6% (P<0.005). 

Consistent with these observations, modulus was lowest in scaffolds processed in 

100% ethanol with respect to all other conditions assayed (P<0.005) (Figure B.2 C). This 

material property was increased in scaffolds processed in 40% glutaraldehyde (66.1% 

cross-linked) with respect to samples processed in 1% glutaraldehyde (48.2% cross-

linked). Together, these data indicate that changes in cross-linking introduce fundamental 

changes into the structure of an electrospun collagen scaffold.  
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Figure B.2 A-C. Material properties of electrospun collagen scaffolds as a function of 
cross-linking. Stress at failure (A) was similar in all samples with the exception that 
stress was decreased in scaffolds processed in 100% ethanol (no glutaraldehyde) with 
respect to all other scaffolds (P<0.004). Strain at failure (B) generally decreased as a 
function of increasing glutaraldehyde concentration (P<0.005). The modulus increased 
as a function of increased cross-linking (P<0.005) 
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DISCUSSION 

 

The percentage of cross-linking present in the scaffolds did not change to any 

great extent in samples processed in 1, 10 and 40% glutaraldehyde (e.g. Figure B.1). 

Despite this result, scaffolds processed under these conditions exhibited subtle 

differences in material properties. We believe these differences can be attributed to the 

chemistry of glutaraldehyde and specific structural changes imparted on individual fibers 

by this cross-linking agent. Glutaraldehyde is described as a zero distance cross-linker, 

and as such, this agent should primarily impact the structure of individual fibers. 

However, at high concentrations glutaraldehyde can undergo polymerization, effectively 

increasing its cross-linking distance [23]. Highly cross-linked scaffolds also exhibit less 

elasticity than scaffolds processed with nominal amounts of cross-linking. Highly cross-

linked scaffolds lack the coiled structures that appear to dampen the initial effects of 

strain on a scaffold that has been subjected to a nominal degree of cross-linking (e.g. “no 

coils to uncoil”). 

We have detected evidence of cross-linking in scaffolds processed in 100% 

ethanol and believe this represents an artifact of the alcohol induced precipitation 

process; precipitation appears to sequester amines within the structure of the partially 

stabilized fibers, effectively reducing the number of TNBS binding sites. We note that 

ethanol treated scaffolds are stable in an aqueous environment when hydrated, including 

the bicarbonate/TNBS solution used in our cross-linking assay. In contrast, the dry, 

electrospun scaffolds that we use to generate baseline values of cross-linking undergo 
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complete dissolution (nearly immediately) when exposed to the bicarbonate/TNBS buffer 

system used in the cross-linking assay. In theory, dissolution exposes all available sites to 

the colorimetric agent, thereby “inflating” the total number of binding sites that can be 

detected by the assay. The putative sequestered sites that we believe are present in the 

ethanol processed samples appear to exist in a very stable compartment and do not appear 

to be particularly susceptible to cross-linking with glutaraldehyde. It is possible that the 

glutaraldehyde does not effectively penetrate the surface of the electrospun fibers 

(possibly because the ethanol extracts water from the collagen) in the alcohol-based 

solvent system, a condition that may lead to the formation of a cross-linked “shell” on the 

fibers.  We believe that as a result of these effects we cannot achieve 100% cross-linking 

under the conditions used to process our fibers. 

Modulating the percentage of cross-linking present in a hydrated scaffold served 

to induce incremental changes in scaffold material properties. Scaffolds processed in 

100% ethanol and low concentrations of glutaraldehyde exhibited a very regional 

response to strain. The hydrogen bonds present in these samples appear to stabilize the 

structure of individual fibers, however, it is unlikely these bonds can mediate fiber-to-

fiber interactions to any great extent, resulting in a non-uniform response to strain.  

Similar arguments may explain why scaffolds processed in low concentrations of 

glutaraldehyde (<1%) exhibit this same behavior, especially if the use of an alcohol 

carrier induces the formation of a structure (“shell”) that largely excludes glutaraldehyde 

from the interior of the fibers. Strains were uniformly distributed in the scaffolds as the 

concentration of glutaraldehyde was increased beyond 1%.  
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In closing, the material properties of electrospun scaffolds can be modulated at 

several sites in the fabrication process. For example, the introduction of varying degrees 

of fiber alignment into a scaffold at the time of fabrication (through the use of rotating 

target mandrels) can be used to modulate the anisotropic material properties of this 

unique class of nano-scale biomaterials. We explored how changes in cross-linking 

hydration can be used to modulate the material properties of the electrospun scaffold; it 

should be possible to exploit this property to directly tailor these biomaterials to specific 

applications. For example, the introduction of high degrees of cross-linking into scaffolds 

composed of highly aligned fibers might be used to produce constructs that mimic 

relatively inelastic connective tissues like ligaments and tendons. 
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